Abstract
First order phase transitions can leave relic pockets of false vacua and their particles, that manifest as macroscopic Dark Matter. We compute one predictive model: a gauge theory with a dark quark relic heavier than the confinement scale. During the first order phase transition to confinement, dark quarks remain in the false vacuum and get compressed, forming Fermi balls that can undergo gravitational collapse to stable dark dwarfs (bound states analogous to white dwarfs) near the Chandrasekhar limit, or primordial black holes.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky Composite Dark Matter, Phys. Rev. D 81 (2010) 095001 [arXiv:0909.2034] [INSPIRE].
O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and Dark Matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].
T. Appelquist et al., Stealth Dark Matter: Dark scalar baryons through the Higgs portal, Phys. Rev. D 92 (2015) 075030 [arXiv:1503.04203] [INSPIRE].
O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental Composite Dark Matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].
R. Huo, S. Matsumoto, Y.-L. Sming Tsai and T.T. Yanagida, A scenario of heavy but visible baryonic dark matter, JHEP 09 (2016) 162 [arXiv:1506.06929] [INSPIRE].
F. Sannino, A. Strumia, A. Tesi and E. Vigiani, Fundamental partial compositeness, JHEP 11 (2016) 029 [arXiv:1607.01659] [INSPIRE].
J.M. Cline, W. Huang and G.D. Moore, Challenges for models with composite states, Phys. Rev. D 94 (2016) 055029 [arXiv:1607.07865] [INSPIRE].
G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].
J.M. Berryman, A. de Gouvêa, K.J. Kelly and Y. Zhang, Dark Matter and Neutrino Mass from the Smallest Non-Abelian Chiral Dark Sector, Phys. Rev. D 96 (2017) 075010 [arXiv:1706.02722] [INSPIRE].
A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Dark Matter as a weakly coupled Dark Baryon, JHEP 10 (2017) 210 [arXiv:1707.05380] [INSPIRE].
R. Contino, A. Mitridate, A. Podo and M. Redi, Gluequark Dark Matter, JHEP 02 (2019) 187 [arXiv:1811.06975] [INSPIRE].
D. Buttazzo, L. Di Luzio, G. Landini, A. Strumia and D. Teresi, Dark Matter from self-dual gauge/Higgs dynamics, JHEP 10 (2019) 067 [arXiv:1907.11228] [INSPIRE].
R. Contino, A. Podo and F. Revello, Composite Dark Matter from Strongly-Interacting Chiral Dynamics, JHEP 02 (2021) 091 [arXiv:2008.10607] [INSPIRE].
E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30 (1984) 272 [INSPIRE].
Y. Bai, A.J. Long and S. Lu, Dark Quark Nuggets, Phys. Rev. D 99 (2019) 055047 [arXiv:1810.04360] [INSPIRE].
P. Asadi, E.D. Kramer, E. Kuflik, G.W. Ridgway, T.R. Slatyer and J. Smirnov, Thermal Squeezeout of Dark Matter, arXiv:2103.09827 [INSPIRE].
M. Crawford and D.N. Schramm, Spontaneous Generation of Density Perturbations in the Early Universe, Nature 298 (1982) 538 [INSPIRE].
S.W. Hawking, I.G. Moss and J.M. Stewart, Bubble Collisions in the Very Early Universe, Phys. Rev. D 26 (1982) 2681 [INSPIRE].
H. Kodama, M. Sasaki and K. Sato, Abundance of Primordial Holes Produced by Cosmological First Order Phase Transition, Prog. Theor. Phys. 68 (1982) 1979 [INSPIRE].
R.V. Konoplich, S.G. Rubin, A.S. Sakharov and M.Y. Khlopov, Formation of black holes in first-order phase transitions as a cosmological test of symmetry-breaking mechanisms, Phys. Atom. Nucl. 62 (1999) 1593 [INSPIRE].
T.D. Lee and Y. Pang, Fermion Soliton Stars and Black Holes, Phys. Rev. D 35 (1987) 3678 [INSPIRE].
B. Svetitsky and L.G. Yaffe, Critical Behavior at Finite Temperature Confinement Transitions, Nucl. Phys. B 210 (1982) 423 [INSPIRE].
B. Lucini, M. Teper and U. Wenger, The High temperature phase transition in SU(N) gauge theories, JHEP 01 (2004) 061 [hep-lat/0307017] [INSPIRE].
B. Lucini, M. Teper and U. Wenger, Properties of the deconfining phase transition in SU(N) gauge theories, JHEP 02 (2005) 033 [hep-lat/0502003] [INSPIRE].
S. Borsányi, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, Precision SU(3) lattice thermodynamics for a large temperature range, JHEP 07 (2012) 056 [arXiv:1204.6184] [INSPIRE].
R.D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].
M. Redi, A. Tesi and H. Tillim, Gravitational Production of a Conformal Dark Sector, JHEP 05 (2021) 010 [arXiv:2011.10565] [INSPIRE].
C. Gross, S. Karamitsos, G. Landini and A. Strumia, Gravitational Vector Dark Matter, JHEP 03 (2021) 174 [arXiv:2012.12087] [INSPIRE].
E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].
D. Pappadopulo, J.T. Ruderman and G. Trevisan, Dark matter freeze-out in a nonrelativistic sector, Phys. Rev. D 94 (2016) 035005 [arXiv:1602.04219] [INSPIRE].
A. Salvio, A. Strumia and W. Xue, Thermal axion production, JCAP 01 (2014) 011 [arXiv:1310.6982] [INSPIRE].
E. Krylov, A. Levin and V. Rubakov, Cosmological phase transition, baryon asymmetry and dark matter Q-balls, Phys. Rev. D 87 (2013) 083528 [arXiv:1301.0354] [INSPIRE].
F.P. Huang and C.S. Li, Probing the baryogenesis and dark matter relaxed in phase transition by gravitational waves and colliders, Phys. Rev. D 96 (2017) 095028 [arXiv:1709.09691] [INSPIRE].
J.-P. Hong, S. Jung and K.-P. Xie, Fermi-ball dark matter from a first-order phase transition, Phys. Rev. D 102 (2020) 075028 [arXiv:2008.04430] [INSPIRE].
M.G. Alford, K. Rajagopal and F. Wilczek, QCD at finite baryon density: Nucleon droplets and color superconductivity, Phys. Lett. B 422 (1998) 247 [hep-ph/9711395] [INSPIRE].
M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [INSPIRE].
J.R. Oppenheimer and G.M. Volkoff, On Massive neutron cores, Phys. Rev. 55 (1939) 374 [INSPIRE].
G. Narain, J. Schaffner-Bielich and I.N. Mishustin, Compact stars made of fermionic dark matter, Phys. Rev. D 74 (2006) 063003 [astro-ph/0605724] [INSPIRE].
B. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, Constraints on Primordial Black Holes, arXiv:2002.12778 [INSPIRE].
G. Dvali, Black Holes as Brains: Neural Networks with Area Law Entropy, Fortsch. Phys. 66 (2018) 1800007 [arXiv:1801.03918] [INSPIRE].
W.G. Unruh, PreHawking radiation, arXiv:1802.09107 [INSPIRE].
M. Ardu, L. Di Luzio, G. Landini, A. Strumia, D. Teresi and J.-W. Wang, Axion quality from the (anti)symmetric of SU(\( \mathcal{N} \)), JHEP 11 (2020) 090 [arXiv:2007.12663] [INSPIRE].
C. Gross, A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Abundance of Colored Relics, Phys. Rev. D 99 (2019) 016024 [arXiv:1811.08418] [INSPIRE].
D.M. Jacobs, G.D. Starkman and B.W. Lynn, Macro Dark Matter, Mon. Not. Roy. Astron. Soc. 450 (2015) 3418 [arXiv:1410.2236] [INSPIRE].
J. Singh Sidhu, R.J. Scherrer and G. Starkman, Death and serious injury from dark matter, Phys. Lett. B 803 (2020) 135300 [arXiv:1907.06674] [INSPIRE].
P.W. Graham, R. Janish, V. Narayan, S. Rajendran and P. Riggins, White Dwarfs as Dark Matter Detectors, Phys. Rev. D 98 (2018) 115027 [arXiv:1805.07381] [INSPIRE].
H. Niikura et al., Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations, Nature Astron. 3 (2019) 524 [arXiv:1701.02151] [INSPIRE].
N. Smyth, S. Profumo, S. English, T. Jeltema, K. McKinnon and P. Guhathakurta, Updated Constraints on Asteroid-Mass Primordial Black Holes as Dark Matter, Phys. Rev. D 101 (2020) 063005 [arXiv:1910.01285] [INSPIRE].
S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].
V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Viable range of the mass scale of the standard model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].
G. D’Amico, A. Strumia, A. Urbano and W. Xue, Direct anthropic bound on the weak scale from supernovæ explosions, Phys. Rev. D 100 (2019) 083013 [arXiv:1906.00986] [INSPIRE].
B.J. Carr and M.J. Rees, The anthropic principle and the structure of the physical world, Nature 278 (1979) 605 [INSPIRE].
J.D. Barrow and F.J. Tipler, The Anthropic Cosmological Principle, Oxford University Press (1988) [INSPIRE].
L.J. Hall and Y. Nomura, Evidence for the Multiverse in the Standard Model and Beyond, Phys. Rev. D 78 (2008) 035001 [arXiv:0712.2454] [INSPIRE].
R.L. Jaffe, A. Jenkins and I. Kimchi, Quark Masses: An Environmental Impact Statement, Phys. Rev. D 79 (2009) 065014 [arXiv:0809.1647] [INSPIRE].
L. Susskind, The Anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
B. Freivogel, M. Kleban, M. Rodriguez Martinez and L. Susskind, Observational consequences of a landscape, JHEP 03 (2006) 039 [hep-th/0505232] [INSPIRE].
A. Aguirre, M.C. Johnson and A. Shomer, Towards observable signatures of other bubble universes, Phys. Rev. D 76 (2007) 063509 [arXiv:0704.3473] [INSPIRE].
A. Hook and J. Huang, Searches for other vacua. Part I. Bubbles in our universe, JHEP 08 (2019) 148 [arXiv:1904.00020] [INSPIRE].
N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a TeV, hep-th/0501082 [INSPIRE].
P. Ghorbani, A. Strumia and D. Teresi, A landscape for the cosmological constant and the Higgs mass, JHEP 01 (2020) 054 [arXiv:1911.01441] [INSPIRE].
Y. Bai and A.J. Long, Six Flavor Quark Matter, JHEP 06 (2018) 072 [arXiv:1804.10249] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2105.02840
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Gross, C., Landini, G., Strumia, A. et al. Dark Matter as dark dwarfs and other macroscopic objects: multiverse relics?. J. High Energ. Phys. 2021, 33 (2021). https://doi.org/10.1007/JHEP09(2021)033
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2021)033