Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Spontaneous CP violation and horizontal symmetry in the MSSM: toward lepton flavor naturalness

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 06 September 2021
  • Volume 2021, article number 31, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Spontaneous CP violation and horizontal symmetry in the MSSM: toward lepton flavor naturalness
Download PDF
  • Daniel Aloni1,
  • Pouya Asadi  ORCID: orcid.org/0000-0003-4712-402X2,
  • Yuichiro Nakai3,
  • Matthew Reece4 &
  • …
  • Motoo Suzuki3 
  • 221 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study the contributions of supersymmetric models with a U(1) horizontal symmetry and only spontaneous CP breaking to various lepton flavor observables, such as μ → eγ and the electron electric dipole moment. We show that both a horizontal symmetry and a lack of explicit CP violation can alleviate the existing bounds from such observables. The undetermined \( \mathcal{O} \)(1) coefficients in such mass matrix models muddle the interpretation of the bounds from various flavor observables. To overcome this, we define a new fine-tuning measure for different observables in such setups. This allows us to study how naturally the observed IR flavor observables can emerge from a given mass matrix model. We use our flavor-naturalness measure in study of our supersymmetric models and quantify the degree of fine tuning required by the bounds from various lepton flavor observables at each mass scale of sleptons, neutralinos, and charginos.

Article PDF

Download to read the full article text

Similar content being viewed by others

Lepton flavor violation and neutrino masses from A5 and CP in the non-universal MSSM

Article Open access 13 June 2019

Controlled flavor violation in the MSSM from a unified Δ(27) flavor symmetry

Article Open access 10 September 2018

Higgs flavor phenomenology in a supersymmetric left-right model with parity

Article Open access 18 June 2021
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [Addendum ibid. 19 (1979) 1277] [INSPIRE].

  2. E. Gildener, Gauge Symmetry Hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].

    Article  ADS  Google Scholar 

  3. L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

    Article  ADS  Google Scholar 

  4. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].

  5. S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [Adv. Ser. Direct. High Energy Phys. 21 (2010) 1] [hep-ph/9709356] [INSPIRE].

  6. C. Csáki, S. Lombardo and O. Telem, TASI Lectures on Non-supersymmetric BSM Models, in Theoretical Advanced Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics (TASI 2016): Boulder, CO, U.S.A., June 6 – July 1, 2016, R. Essig and I. Low, eds., WSP (2018), pp. 501–570, DOI [arXiv:1811.04279] [INSPIRE].

  7. P. Draper and H. Rzehak, A Review of Higgs Mass Calculations in Supersymmetric Models, Phys. Rept. 619 (2016) 1 [arXiv:1601.01890] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than mZ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  9. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Barbieri, M. Frigeni and F. Caravaglios, The Supersymmetric Higgs for heavy superpartners, Phys. Lett. B 258 (1991) 167 [INSPIRE].

    Article  ADS  Google Scholar 

  11. M.R. Buckley, D. Feld, S. Macaluso, A. Monteux and D. Shih, Cornering Natural SUSY at LHC Run II and Beyond, JHEP 08 (2017) 115 [arXiv:1610.08059] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

  13. R. Kitano, H. Ooguri and Y. Ookouchi, Supersymmetry Breaking and Gauge Mediation, Ann. Rev. Nucl. Part. Sci. 60 (2010) 491 [arXiv:1001.4535] [INSPIRE].

    Article  ADS  Google Scholar 

  14. H. Pagels and J.R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Weinberg, Cosmological Constraints on the Scale of Supersymmetry Breaking, Phys. Rev. Lett. 48 (1982) 1303 [INSPIRE].

    Article  ADS  Google Scholar 

  16. M.Y. Khlopov and A.D. Linde, Is It Easy to Save the Gravitino?, Phys. Lett. B 138 (1984) 265 [INSPIRE].

    Article  ADS  Google Scholar 

  17. T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  18. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].

  20. Y. Nir and N. Seiberg, Should squarks be degenerate?, Phys. Lett. B 309 (1993) 337 [hep-ph/9304307] [INSPIRE].

  21. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: The Sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].

  22. L.E. Ibá nez and G.G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett. B 332 (1994) 100 [hep-ph/9403338] [INSPIRE].

  23. Y. Grossman and Y. Nir, Lepton mass matrix models, Nucl. Phys. B 448 (1995) 30 [hep-ph/9502418] [INSPIRE].

  24. E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149 (1984) 351 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. Y.B. Zeldovich, A New Type of Radioactive Decay: Gravitational Annihilation of Baryons, Phys. Lett. A 59 (1976) 254 [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett. 122 (2019) 191601 [arXiv:1810.05337] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T2K collaboration, Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations, Nature 580 (2020) 339 [Erratum ibid. 583 (2020) E16] [arXiv:1910.03887] [INSPIRE].

  29. NOvA collaboration, Recent three-flavor neutrino oscillation results from the NOvA experiment, J. Phys. Conf. Ser. 1690 (2020) 012172 [INSPIRE].

  30. T2K collaboration, Improved constraints on neutrino mixing from the T2K experiment with 3.13 × 1021 protons on target, Phys. Rev. D 103 (2021) 112008 [arXiv:2101.03779] [INSPIRE].

  31. M. Dine, R.G. Leigh and D.A. MacIntire, Of CP and other gauge symmetries in string theory, Phys. Rev. Lett. 69 (1992) 2030 [hep-th/9205011] [INSPIRE].

    Article  ADS  Google Scholar 

  32. K.-w. Choi, D.B. Kaplan and A.E. Nelson, Is CP a gauge symmetry?, Nucl. Phys. B 391 (1993) 515 [hep-ph/9205202] [INSPIRE].

  33. Y. Nir and R. Rattazzi, Solving the supersymmetric CP problem with Abelian horizontal symmetries, Phys. Lett. B 382 (1996) 363 [hep-ph/9603233] [INSPIRE].

  34. ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].

  35. Y. Nakai and M. Reece, Electric Dipole Moments in Natural Supersymmetry, JHEP 08 (2017) 031 [arXiv:1612.08090] [INSPIRE].

    Article  ADS  Google Scholar 

  36. C. Cesarotti, Q. Lu, Y. Nakai, A. Parikh and M. Reece, Interpreting the Electron EDM Constraint, JHEP 05 (2019) 059 [arXiv:1810.07736] [INSPIRE].

    Article  ADS  Google Scholar 

  37. MEG collaboration, Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].

  38. MEG II collaboration, The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].

  39. L.J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett. 84 (2000) 2572 [hep-ph/9911341][INSPIRE].

  40. L. Wolfenstein, Parametrization of the Kobayashi-Maskawa Matrix, Phys. Rev. Lett. 51 (1983) 1945 [INSPIRE].

    Article  ADS  Google Scholar 

  41. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].

    Article  ADS  Google Scholar 

  42. I. Kozyryev and N.R. Hutzler, Precision Measurement of Time-Reversal Symmetry Violation with Laser-Cooled Polyatomic Molecules, Phys. Rev. Lett. 119 (2017) 133002 [arXiv:1705.11020] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A.C. Vutha, M. Horbatsch and E.A. Hessels, Oriented polar molecules in a solid inert-gas matrix: a proposed method for measuring the electric dipole moment of the electron, Atoms 6 (2018) 3 [arXiv:1710.08785] [INSPIRE].

    Article  ADS  Google Scholar 

  44. NL-eEDM collaboration, Measuring the electric dipole moment of the electron in BaF, Eur. Phys. J. D 72 (2018) 197 [arXiv:1804.10012] [INSPIRE].

  45. C.J. Ho et al., New techniques for a measurement of the electron’s electric dipole moment, New J. Phys. 22 (2020) 053031 [arXiv:2002.02332] [INSPIRE].

    Article  ADS  Google Scholar 

  46. N.R. Hutzler et al., Searches for new sources of CP-violation using molecules as quantum sensors, arXiv:2010.08709 [INSPIRE].

  47. N.J. Fitch, J. Lim, E.A. Hinds, B.E. Sauer and M.R. Tarbutt, Methods for measuring the electron’s electric dipole moment using ultracold YbF molecules, Quantum Sci. Technol. 6 (2021) 014006.

    Article  Google Scholar 

  48. A. Baldini et al., A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET, MEG, Mu2e and Mu3e collaborations, arXiv:1812.06540 [INSPIRE].

  49. SINDRUM II collaboration, A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].

  50. R.K. Kutschke, The Mu2e Experiment at Fermilab, in 31st International Symposium on Physics In Collision, (2011) [arXiv:1112.0242] [INSPIRE].

  51. COMET collaboration, COMET Phase-I Technical Design Report, PTEP 2020 (2020) 033C01 [arXiv:1812.09018] [INSPIRE].

  52. COMET collaboration, COMET status and plans, EPJ Web Conf. 212 (2019) 01006 [INSPIRE].

  53. SINDRUM collaboration, Search for the Decay μ+ → e+e+e−, Nucl. Phys. B 299 (1988) 1 [INSPIRE].

  54. A. Blondel et al., Research Proposal for an Experiment to Search for the Decay μ → eee, arXiv:1301.6113 [INSPIRE].

  55. Mu3e collaboration, The Mu3e Experiment, Nucl. Phys. B Proc. Suppl. 248–250 (2014) 35 [INSPIRE].

  56. J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].

  57. J.R. Ellis, J.S. Lee and A. Pilaftsis, Electric Dipole Moments in the MSSM Reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Crivellin, M. Hoferichter and P. Schmidt-Wellenburg, Combined explanations of (g − 2)μ,e and implications for a large muon EDM, Phys. Rev. D 98 (2018) 113002 [arXiv:1807.11484] [INSPIRE].

  59. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J. Aebischer, W. Dekens, E.E. Jenkins, A.V. Manohar, D. Sengupta and P. Stoffer, Effective field theory interpretation of lepton magnetic and electric dipole moments, arXiv:2102.08954 [INSPIRE].

  61. S.A.R. Ellis and A. Pierce, Impact of Future Lepton Flavor Violation Measurements in the Minimal Supersymmetric Standard Model, Phys. Rev. D 94 (2016) 015014 [arXiv:1604.01419] [INSPIRE].

    Article  ADS  Google Scholar 

  62. R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].

  63. H.M. Lee et al., A unique \( {\mathbb{Z}}_4^R \) symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].

  64. K. Kurosawa, N. Maru and T. Yanagida, Nonanomalous R symmetry in supersymmetric unified theories of quarks and leptons, Phys. Lett. B 512 (2001) 203 [hep-ph/0105136] [INSPIRE].

  65. K.S. Babu, I. Gogoladze and K. Wang, Gauged baryon parity and nucleon stability, Phys. Lett. B 570 (2003) 32 [hep-ph/0306003] [INSPIRE].

  66. G.F. Giudice and A. Masiero, A Natural Solution to the μ-problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    Article  ADS  Google Scholar 

  67. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

  69. J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, in 11th International Conference on Supersymmetry and the Unification of Fundamental Interactions, (2003) [hep-ph/0306127] [INSPIRE].

  70. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Ibe and T.T. Yanagida, The Lightest Higgs Boson Mass in Pure Gravity Mediation Model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M. Ibe, S. Matsumoto and T.T. Yanagida, Pure Gravity Mediation with m3/2 = 10–100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  74. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].

  75. M. Baryakhtar, E. Hardy and J. March-Russell, Axion Mediation, JHEP 07 (2013) 096 [arXiv:1301.0829] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. P. Binetruy and M.K. Gaillard, Radiative Corrections in Compactified Superstring Models, Phys. Lett. B 168 (1986) 347 [INSPIRE].

    Article  ADS  Google Scholar 

  77. P. Binetruy and M.K. Gaillard, Noncompact Symmetries and Scalar Masses in Superstring - Inspired Models, Phys. Lett. B 195 (1987) 382 [INSPIRE].

    Article  ADS  Google Scholar 

  78. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  79. R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. L. Aparicio, M. Cicoli, S. Krippendorf, A. Maharana, F. Muia and F. Quevedo, Sequestered de Sitter String Scenarios: Soft-terms, JHEP 11 (2014) 071 [arXiv:1409.1931] [INSPIRE].

    Article  ADS  Google Scholar 

  81. M. Reece and W. Xue, SUSY’s Ladder: reframing sequestering at Large Volume, JHEP 04 (2016) 045 [arXiv:1512.04941] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  82. P. Paradisi, Constraints on SUSY lepton flavor violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [INSPIRE].

  83. W. Altmannshofer, R. Harnik and J. Zupan, Low Energy Probes of PeV Scale Sfermions, JHEP 11 (2013) 202 [arXiv:1308.3653] [INSPIRE].

    Article  ADS  Google Scholar 

  84. P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

  85. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

    Google Scholar 

  86. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  87. S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].

    Google Scholar 

  88. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  89. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  90. C. Giganti, S. Lavignac and M. Zito, Neutrino oscillations: The rise of the PMNS paradigm, Prog. Part. Nucl. Phys. 98 (2018) 1 [arXiv:1710.00715] [INSPIRE].

    Article  ADS  Google Scholar 

  91. R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  92. T.R. Harvey and A. Lukas, Particle Physics Model Building with Reinforcement Learning, arXiv:2103.04759 [INSPIRE].

  93. J. Hollingsworth, M. Ratz, P. Tanedo and D. Whiteson, Efficient sampling of constrained high-dimensional theoretical spaces with machine learning, arXiv:2103.06957 [INSPIRE].

  94. CMS collaboration, Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 04 (2021) 123 [arXiv:2012.08600] [INSPIRE].

  95. ATLAS collaboration, SUSY March 2021 Summary Plot Update, Tech. Rep. ATL-PHYS-PUB-2021-007, CERN, Geneva (2021).

  96. J. Rosiek, P. Chankowski, A. Dedes, S. Jager and P. Tanedo, SUSY_FLAVOR: A Computational Tool for FCNC and CP-violating Processes in the MSSM, Comput. Phys. Commun. 181 (2010) 2180 [arXiv:1003.4260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  97. A. Crivellin, J. Rosiek, P.H. Chankowski, A. Dedes, S. Jaeger and P. Tanedo, SUSY_FLAVOR v2: A Computational tool for FCNC and CP-violating processes in the MSSM, Comput. Phys. Commun. 184 (2013) 1004 [arXiv:1203.5023] [INSPIRE].

    Article  ADS  Google Scholar 

  98. J. Rosiek, SUSY FLAVOR v2.5: a computational tool for FCNC and CP-violating processes in the MSSM, Comput. Phys. Commun. 188 (2015) 208 [arXiv:1410.0606] [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Boston University, 590 Commonwealth Ave, Boston, MA, 02215, USA

    Daniel Aloni

  2. Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA

    Pouya Asadi

  3. Tsung-Dao Lee Institute and School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China

    Yuichiro Nakai & Motoo Suzuki

  4. Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA, 02138, USA

    Matthew Reece

Authors
  1. Daniel Aloni
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pouya Asadi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yuichiro Nakai
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Matthew Reece
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Motoo Suzuki
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pouya Asadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2104.02679

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloni, D., Asadi, P., Nakai, Y. et al. Spontaneous CP violation and horizontal symmetry in the MSSM: toward lepton flavor naturalness. J. High Energ. Phys. 2021, 31 (2021). https://doi.org/10.1007/JHEP09(2021)031

Download citation

  • Received: 30 April 2021

  • Revised: 05 August 2021

  • Accepted: 13 August 2021

  • Published: 06 September 2021

  • DOI: https://doi.org/10.1007/JHEP09(2021)031

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Supersymmetric Standard Model
  • CP violation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature