Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

nNNPDF2.0: quark flavor separation in nuclei from LHC data

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 28 September 2020
  • Volume 2020, article number 183, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
nNNPDF2.0: quark flavor separation in nuclei from LHC data
Download PDF
  • Rabah Abdul Khalek  ORCID: orcid.org/0000-0002-5489-73651,2,
  • Jacob J. Ethier1,2,
  • Juan Rojo  ORCID: orcid.org/0000-0003-4279-21921,2 &
  • …
  • Gijs van Weelden2 
  • 452 Accesses

  • 67 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present a model-independent determination of the nuclear parton distribution functions (nPDFs) using machine learning methods and Monte Carlo techniques based on the NNPDF framework. The neutral-current deep-inelastic nuclear structure functions used in our previous analysis, nNNPDF1.0, are complemented by inclusive and charm-tagged cross-sections from charged-current scattering. Furthermore, we include all available measurements of W and Z leptonic rapidity distributions in proton-lead collisions from ATLAS and CMS at \( \sqrt{s} \) = 5.02 TeV and 8.16 TeV. The resulting nPDF determination, nNNPDF2.0, achieves a good description of all datasets. In addition to quantifying the nuclear modifications affecting individual quarks and antiquarks, we examine the implications for strangeness, assess the role that the momentum and valence sum rules play in nPDF extractions, and present predictions for representative phenomenological applications. Our results, made available via the LHAPDF library, highlight the potential of high-energy collider measurements to probe nuclear dynamics in a robust manner.

Article PDF

Download to read the full article text

Similar content being viewed by others

Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider

Article Open access 04 June 2019

nNNPDF3.0: evidence for a modified partonic structure in heavy nuclei

Article Open access 03 June 2022

The path to proton structure at 1% accuracy

Article Open access 11 May 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J. Rojo, The partonic content of nucleons and nuclei, arXiv:1910.03408 [INSPIRE].

  2. J.J. Ethier and E.R. Nocera, Parton distributions in nucleons and nuclei, Ann. Rev. Nucl. Part. Sci. (2020) 1 [arXiv:2001.07722] [INSPIRE].

  3. J. Gao, L. Harland-Lang and J. Rojo, The structure of the proton in the LHC precision era, Phys. Rept. 742 (2018) 1 [arXiv:1709.04922] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  4. N. Armesto et al., Heavy ion collisions at the LHC - Last Call for predictions. J. Phys. G 35 (2008) 054001 [INSPIRE].

    Google Scholar 

  5. STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

  6. NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  7. T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, arXiv:1912.10053 [INSPIRE].

  8. L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].

    ADS  Google Scholar 

  9. S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, αs, and heavy-quark masses for LHC Run II, Phys. Rev. D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].

    ADS  Google Scholar 

  10. NNPDF collaboration, Nuclear uncertainties in the determination of proton PDFs, Eur. Phys. J. C 79 (2019) 282 [arXiv:1812.09074] [INSPIRE].

  11. K.J. Eskola, P. Paakkinen, H. Paukkunen and C.A. Salgado, EPPS16: nuclear parton distributions with LHC data, Eur. Phys. J. C 77 (2017) 163 [arXiv:1612.05741] [INSPIRE].

    ADS  Google Scholar 

  12. K. Kovarik et al., nCTEQ15 — Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D 93 (2016) 085037 [arXiv:1509.00792] [INSPIRE].

    ADS  Google Scholar 

  13. NNPDF collaboration, Nuclear parton distributions from lepton-nucleus scattering and the impact of an electron-ion collider, Eur. Phys. J. C 79 (2019) 471 [arXiv:1904.00018] [INSPIRE].

  14. M. Walt, I. Helenius and W. Vogelsang, Open-source QCD analysis of nuclear parton distribution functions at NLO and NNLO, Phys. Rev. D 100 (2019) 096015 [arXiv:1908.03355] [INSPIRE].

    ADS  Google Scholar 

  15. H. Khanpour and S. Atashbar Tehrani, Global analysis of nuclear parton distribution functions and their uncertainties at next-to-next-to-leading order, Phys. Rev. D 93 (2016) 014026 [arXiv:1601.00939] [INSPIRE].

    ADS  Google Scholar 

  16. ALICE collaboration, Measurement of charged jet production cross sections and nuclear modification in p-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Lett. B 749 (2015) 68 [arXiv:1503.00681] [INSPIRE].

  17. ALICE collaboration, Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Lett. B 760 (2016) 720 [arXiv:1601.03658] [INSPIRE].

  18. ALICE collaboration, Measurement of dijet kT in p-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Lett. B 746 (2015) 385 [arXiv:1503.03050] [INSPIRE].

  19. ATLAS collaboration, Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in \( \sqrt{s_{NN}} \) = 5.02 TeV p + Pb collisions measured by the ATLAS experiment, Phys. Lett. B 763 (2016) 313 [arXiv:1605.06436] [INSPIRE].

  20. CMS collaboration, Studies of dijet transverse momentum balance and pseudorapidity distributions in pPb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Eur. Phys. J. C 74 (2014) 2951 [arXiv:1401.4433] [INSPIRE].

  21. ALICE collaboration, Measurement of W-boson production in p–pb collisions at \( \sqrt{s_{NN}} \) = 5.02 tev with alice at the LHC, J. Phys. Conf. Ser. 612 (2015) 012009.

  22. Measurement of W → μν production in p+Pb collision at \( \sqrt{s_{NN}} \) = 5.02 TeV with ATLAS detector at the LHC, ATLAS-CONF-2015-056 (2015).

  23. ATLAS collaboration, Z boson production in p+Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV measured with the ATLAS detector, Phys. Rev. C 92 (2015) 044915 [arXiv:1507.06232] [INSPIRE].

  24. CMS collaboration, Study of Z boson production in pPb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Lett. B 759 (2016) 36 [arXiv:1512.06461] [INSPIRE].

  25. CMS collaboration, Study of W boson production in pPb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Lett. B 750 (2015) 565 [arXiv:1503.05825] [INSPIRE].

  26. CMS collaboration, Charm-tagged jet production in pPb collisions at 5.02 TeV and pp collisions at 2.76 TeV, CMS-PAS-HIN-15-012 (2015).

  27. ALICE collaboration, Measurement of D-meson production versus multiplicity in p-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, JHEP 08 (2016) 078 [arXiv:1602.07240] [INSPIRE].

  28. ALICE collaboration, Measurement of electrons from heavy-flavour hadron decays in p-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Lett. B 754 (2016) 81 [arXiv:1509.07491] [INSPIRE].

  29. ALICE collaboration, Measurement of prompt D-meson production in p-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. Lett. 113 (2014) 232301 [arXiv:1405.3452] [INSPIRE].

  30. CMS collaboration, Transverse momentum spectra of inclusive b jets in pPb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Lett. B 754 (2016) 59 [arXiv:1510.03373] [INSPIRE].

  31. CMS collaboration, Study of B meson production in p+Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV using exclusive hadronic decays, Phys. Rev. Lett. 116 (2016) 032301 [arXiv:1508.06678] [INSPIRE].

  32. LHCb collaboration, Study of prompt D0 meson production in p-Pb collisions at \( \sqrt{s_{NN}} \) = 5 TeV, JHEP 10 (2017) 090 [arXiv:1707.02750] [INSPIRE].

  33. LHCb collaboration, Measurement of B+, B0 and \( {\Lambda}_b^0 \) production in p-Pb collisions at \( \sqrt{s_{NN}} \) = 8.16 TeV, Phys. Rev. D 99 (2019) 052011 [arXiv:1902.05599] [INSPIRE].

  34. A. Kusina et al., Vector boson production in pPb and PbPb collisions at the LHC and its impact on nCTEQ15 PDFs, Eur. Phys. J. C 77 (2017) 488 [arXiv:1610.02925] [INSPIRE].

    ADS  Google Scholar 

  35. A. Kusina, J.-P. Lansberg, I. Schienbein and H.-S. Shao, Gluon shadowing in heavy-flavor production at the LHC, Phys. Rev. Lett. 121 (2018) 052004 [arXiv:1712.07024] [INSPIRE].

    ADS  Google Scholar 

  36. N. Armesto, H. Paukkunen, J.M. Penín, C.A. Salgado and P. Zurita, An analysis of the impact of LHC Run I proton-lead data on nuclear parton densities, Eur. Phys. J. C 76 (2016) 218 [arXiv:1512.01528] [INSPIRE].

    ADS  Google Scholar 

  37. K.J. Eskola, P. Paakkinen and H. Paukkunen, Non-quadratic improved Hessian PDF reweighting and application to CMS dijet measurements at 5.02 TeV, Eur. Phys. J. C 79 (2019) 511 [arXiv:1903.09832] [INSPIRE].

    ADS  Google Scholar 

  38. S. Forte, L. Garrido, J.I. Latorre and A. Piccione, Neural network parametrization of deep inelastic structure functions, JHEP 05 (2002) 062 [hep-ph/0204232] [INSPIRE].

    ADS  Google Scholar 

  39. NNPDF collaboration, Unbiased determination of the proton structure function F(2)**p with faithful uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067] [INSPIRE].

  40. NNPDF collaboration, Neural network determination of parton distributions: the nonsinglet case, JHEP 03 (2007) 039 [hep-ph/0701127] [INSPIRE].

  41. NNPDF collaboration, A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].

  42. NNPDF collaboration, Update on neural network parton distributions: NNPDF1.1, arXiv:0811.2288 [INSPIRE].

  43. NNPDF collaboration, Fitting parton distribution data with multiplicative normalization uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].

  44. R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].

    ADS  MATH  Google Scholar 

  45. R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].

    ADS  Google Scholar 

  46. NNPDF collaboration, Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B 855 (2012) 153 [arXiv:1107.2652] [INSPIRE].

  47. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    ADS  Google Scholar 

  48. ATLAS collaboration, Precision measurement and interpretation of inclusive W +, W − and Z/γ∗ production cross sections with the ATLAS detector, Eur. Phys. J. C 77 (2017) 367 [arXiv:1612.03016] [INSPIRE].

  49. J. Gomez et al., Measurement of the A-dependence of deep inelastic electron scattering, Phys. Rev. D 49 (1994) 4348 [INSPIRE].

    ADS  Google Scholar 

  50. New Muon collaboration, A reevaluation of the nuclear structure function ratios for D, He, Li-6, C and Ca, Nucl. Phys. B 441 (1995) 3 [hep-ph/9503291] [INSPIRE].

  51. New Muon collaboration, The structure function ratios F2(li)/F2(D) and F2(C)/F2(D) at small x, Nucl. Phys. B 441 (1995) 12 [hep-ex/9504002] [INSPIRE].

  52. New Muon collaboration, The A dependence of the nuclear structure function ratios, Nucl. Phys. B 481 (1996) 3 [INSPIRE].

  53. European Muon collaboration, Measurement of the ratios of deep inelastic muon — Nucleus cross-sections on various nuclei compared to deuterium, Phys. Lett. B 202 (1988) 603 [INSPIRE].

  54. European Muon collaboration, Measurements of the nucleon structure function in the range 0.002 GeV2 < x < 0.17 GeV2 and 0.2 GeV2 < q2 < 8 GeV2 in deuterium, carbon and calcium, Nucl. Phys. B 333 (1990) 1 [INSPIRE].

  55. E665 collaboration, Shadowing in inelastic scattering of muons on carbon, calcium and lead at low x(Bj), Z. Phys. C 67 (1995) 403 [hep-ex/9505006] [INSPIRE].

  56. D.M. Alde et al., Nuclear dependence of dimuon production at 800 GeV. FNAL-772 experiment, Phys. Rev. Lett. 64 (1990) 2479 [INSPIRE].

  57. European Muon collaboration, Measurements of the nucleon structure functions F2n in deep inelastic muon scattering from deuterium and comparison with those from hydrogen and iron, Nucl. Phys. B 293 (1987) 740 [INSPIRE].

  58. BCDMS collaboration, Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B 189 (1987) 483 [INSPIRE].

  59. European Muon collaboration, A measurement of the ratio of the nucleon structure function in copper and deuterium, Z. Phys. C 57 (1993) 211 [INSPIRE].

  60. New Muon collaboration, The Q2 dependence of the structure function ratio \( {F}_2^{\mathrm{Sn}}/{F}_2^C \) in deep inelastic muon scattering, Nucl. Phys. B 481 (1996) 23 [INSPIRE].

  61. Fermilab E665 collaboration, Shadowing in the muon xenon inelastic scattering cross-section at 490 GeV, Phys. Lett. B 287 (1992) 375 [INSPIRE].

  62. CHORUS collaboration, Measurement of nucleon structure functions in neutrino scattering, Phys. Lett. B 632 (2006) 65 [INSPIRE].

  63. NuTeV collaboration, Precise measurement of dimuon production cross-sections in νμ Fe and \( {\overline{v}}_{\mu } \) Fe deep inelastic scattering at the Tevatron, Phys. Rev. D 64 (2001) 112006 [hep-ex/0102049] [INSPIRE].

  64. CMS collaboration, Observation of nuclear modifications in W± boson production in pPb collisions at \( \sqrt{s_{NN}} \) = 8.16 TeV, Phys. Lett. B 800 (2020) 135048 [arXiv:1905.01486] [INSPIRE].

  65. V. Bertone, S. Carrazza and J. Rojo, APFEL: a PDF evolution library with QED corrections, Comput. Phys. Commun. 185 (2014) 1647 [arXiv:1310.1394] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  66. S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].

    ADS  MATH  Google Scholar 

  67. V. Bertone, S. Carrazza and N.P. Hartland, APFELgrid: a high performance tool for parton density determinations, Comput. Phys. Commun. 212 (2017) 205 [arXiv:1605.02070] [INSPIRE].

    ADS  Google Scholar 

  68. E.L. Berger, J. Gao, C.S. Li, Z.L. Liu and H.X. Zhu, Charm-quark production in deep-inelastic neutrino scattering at next-to-next-to-leading order in QCD, Phys. Rev. Lett. 116 (2016) 212002 [arXiv:1601.05430] [INSPIRE].

    ADS  Google Scholar 

  69. J. Gao, Massive charged-current coefficient functions in deep-inelastic scattering at NNLO and impact on strange-quark distributions, JHEP 02 (2018) 026 [arXiv:1710.04258] [INSPIRE].

    ADS  Google Scholar 

  70. R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].

    ADS  Google Scholar 

  71. T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].

    ADS  Google Scholar 

  72. NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  73. R.D. Ball, E.R. Nocera and J. Rojo, The asymptotic behaviour of parton distributions at small and large x, Eur. Phys. J. C 76 (2016) 383 [arXiv:1604.00024] [INSPIRE].

    ADS  Google Scholar 

  74. K. Gottfried, Sum rule for high-energy electron-proton scattering, Phys. Rev. Lett. 18 (1967) 1174 [INSPIRE].

    ADS  Google Scholar 

  75. S. Forte, The Gottfried sum rule and the light flavor content of the nucleon, Phys. Rev. D 47 (1993) 1842 [INSPIRE].

    ADS  Google Scholar 

  76. R. Abbate and S. Forte, Re-evaluation of the Gottfried sum using neural networks, Phys. Rev. D 72 (2005) 117503 [hep-ph/0511231] [INSPIRE].

    ADS  Google Scholar 

  77. S.J. Brodsky and G.R. Farrar, Scaling laws at large transverse momentum, Phys. Rev. Lett. 31 (1973) 1153 [INSPIRE].

    ADS  Google Scholar 

  78. G. Moreno et al., Dimuon production in proton-copper collisions at \( \sqrt{s} \) = 38.8 GeV, Phys. Rev. D 43 (1991) 2815 [INSPIRE].

    ADS  Google Scholar 

  79. A. Candido, S. Forte and F. Hekhorn, Can \( \overline{MS} \) parton distributions be negative?, arXiv:2006.07377 [INSPIRE].

  80. S. Carrazza and J. Cruz-Martinez, Towards a new generation of parton densities with deep learning models, Eur. Phys. J. C 79 (2019) 676 [arXiv:1907.05075] [INSPIRE].

    ADS  Google Scholar 

  81. I. Brivio and M. Trott, The standard model as an effective field theory, Phys. Rept. 793 (2019) 1 [arXiv:1706.08945] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  82. S. Carrazza, C. Degrande, S. Iranipour, J. Rojo and M. Ubiali, Can new physics hide inside the proton?, Phys. Rev. Lett. 123 (2019) 132001 [arXiv:1905.05215] [INSPIRE].

    ADS  Google Scholar 

  83. R.D. Ball et al., Parton distribution benchmarking with LHC data, JHEP 04 (2013) 125 [arXiv:1211.5142] [INSPIRE].

    ADS  Google Scholar 

  84. A. Kusina et al., Impact of LHC vector boson production in heavy ion collisions on strange PDFs, arXiv:2007.09100 [INSPIRE].

  85. CCFR collaboration, Determination of the strange quark content of the nucleon from a next-to-leading order QCD analysis of neutrino charm production, Z. Phys. C 65 (1995) 189 [hep-ex/9406007] [INSPIRE].

  86. CHORUS collaboration, Leading order analysis of neutrino induced dimuon events in the CHORUS experiment, Nucl. Phys. B 798 (2008) 1 [arXiv:0804.1869] [INSPIRE].

  87. D.A. Mason, Measurement of the strange-antistrange asymmetry at NLO in QCD from NuTeV dimuon data, FERMILAB-THESIS-2006-01 (2006).

  88. NuTeV collaboration, Measurement of the nucleon strange-antistrange asymmetry at next-to-leading order in QCD from NuTeV dimuon data, Phys. Rev. Lett. 99 (2007) 192001 [INSPIRE].

  89. NOMAD collaboration, A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment, Nucl. Phys. B 876 (2013) 339 [arXiv:1308.4750] [INSPIRE].

  90. W.J. Stirling and E. Vryonidou, Charm production in association with an electroweak gauge boson at the LHC, Phys. Rev. Lett. 109 (2012) 082002 [arXiv:1203.6781] [INSPIRE].

    ADS  Google Scholar 

  91. CMS collaboration, Measurement of associated W + charm production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 02 (2014) 013 [arXiv:1310.1138] [INSPIRE].

  92. CMS collaboration, Measurement of the associated production of a W boson and a charm quark at \( \sqrt{s} \) = 8 TeV, CMS-PAS-SMP-18-013 (2019).

  93. CMS collaboration, Measurement of associated production of a W boson and a charm quark in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 269 [arXiv:1811.10021] [INSPIRE].

  94. ATLAS collaboration, Measurement of the production of a W boson in association with a charm quark in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 05 (2014) 068 [arXiv:1402.6263] [INSPIRE].

  95. HERMES collaboration, Reevaluation of the parton distribution of strange quarks in the nucleon, Phys. Rev. D 89 (2014) 097101 [arXiv:1312.7028] [INSPIRE].

  96. I. Borsa, R. Sassot and M. Stratmann, Probing the sea quark content of the proton with one-particle-inclusive processes, Phys. Rev. D 96 (2017) 094020 [arXiv:1708.01630] [INSPIRE].

    ADS  Google Scholar 

  97. JAM collaboration, Strange quark suppression from a simultaneous Monte Carlo analysis of parton distributions and fragmentation functions, Phys. Rev. D 101 (2020) 074020 [arXiv:1905.03788] [INSPIRE].

  98. ATLAS collaboration, Determination of the strange quark density of the proton from ATLAS measurements of the W → ℓν and Z → ℓℓ cross sections, Phys. Rev. Lett. 109 (2012) 012001 [arXiv:1203.4051] [INSPIRE].

  99. S.J. Brodsky, I. Schmidt and S. Liuti, Is the momentum sum rule valid for nuclear structure functions?, arXiv:1908.06317 [INSPIRE].

  100. D. Boer et al., Gluons and the quark sea at high energies: distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].

  101. LHeC Study Group collaboration, A large hadron electron collider at CERN: report on the physics and design concepts for machine and detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].

  102. W. Vogelsang and A. Vogt, Constraints on the proton’s gluon distribution from prompt photon production, Nucl. Phys. B 453 (1995) 334 [hep-ph/9505404] [INSPIRE].

    ADS  Google Scholar 

  103. R. Ichou and D. d’Enterria, Sensitivity of isolated photon production at TeV hadron colliders to the gluon distribution in the proton, Phys. Rev. D 82 (2010) 014015 [arXiv:1005.4529] [INSPIRE].

    ADS  Google Scholar 

  104. D. d’Enterria and J. Rojo, Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data, Nucl. Phys. B 860 (2012) 311 [arXiv:1202.1762] [INSPIRE].

    ADS  MATH  Google Scholar 

  105. J.M. Campbell, J. Rojo, E. Slade and C. Williams, Direct photon production and PDF fits reloaded, Eur. Phys. J. C 78 (2018) 470 [arXiv:1802.03021] [INSPIRE].

    ADS  Google Scholar 

  106. I. Vitev and B.-W. Zhang, A systematic study of direct photon production in heavy ion collisions, Phys. Lett. B 669 (2008) 337 [arXiv:0804.3805] [INSPIRE].

    ADS  Google Scholar 

  107. ATLAS collaboration, Measurement of prompt photon production in \( \sqrt{s_{NN}} \) = 8.16 TeV p+Pb collisions with ATLAS, Phys. Lett. B 796 (2019) 230 [arXiv:1903.02209] [INSPIRE].

  108. S. Catani, M. Fontannaz, J.P. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [INSPIRE].

    ADS  Google Scholar 

  109. ALICE collaboration, Measurement of isolated photon-hadron correlations in \( \sqrt{s_{NN}} \) = 5.02 TeV pp and p-Pb collisions, arXiv:2005.14637 [INSPIRE].

  110. S. Benic, K. Fukushima, O. Garcia-Montero and R. Venugopalan, Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions, JHEP 01 (2017) 115 [arXiv:1609.09424] [INSPIRE].

    ADS  MATH  Google Scholar 

  111. ALICE FoCal collaboration, FoCal: a highly granular digital calorimeter, Nucl. Instrum. Meth. A 958 (2020) 162059.

  112. C. ALICE Collaboration, Letter of intent: a Forward Calorimeter (FoCal) in the ALICE experiment, CERN-LHCC-2020-009 (2020).

  113. M. van Leeuwen, Constraining nuclear parton density functions with forward photon production at the LHC, arXiv:1909.05338 [INSPIRE].

  114. NNPDF collaboration, Reweighting NNPDFs: the W lepton asymmetry, Nucl. Phys. B 849 (2011) 112 [Erratum ibid. 854 (2012) 926] [Erratum ibid. 855 (2012) 927] [arXiv:1012.0836] [INSPIRE].

  115. R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti et al., Reweighting and Unweighting of Parton Distributions and the LHC W lepton asymmetry data, Nucl. Phys. B 855 (2012) 608 [arXiv:1108.1758] [INSPIRE].

    ADS  Google Scholar 

  116. A. Accardi et al., Electron ion collider: the next QCD frontier, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].

    ADS  Google Scholar 

  117. I. Helenius, K.J. Eskola and H. Paukkunen, Probing the small-x nuclear gluon distributions with isolated photons at forward rapidities in p+Pb collisions at the LHC, JHEP 09 (2014) 138 [arXiv:1406.1689] [INSPIRE].

    ADS  Google Scholar 

  118. R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo and L. Rottoli, Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data, Eur. Phys. J. C 78 (2018) 321 [arXiv:1710.05935] [INSPIRE].

    ADS  Google Scholar 

  119. D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto and M. Stratmann, Parton-to-pion fragmentation reloaded, Phys. Rev. D 91 (2015) 014035 [arXiv:1410.6027] [INSPIRE].

    ADS  Google Scholar 

  120. D. d’Enterria, K.J. Eskola, I. Helenius and H. Paukkunen, Confronting current NLO parton fragmentation functions with inclusive charged-particle spectra at hadron colliders, Nucl. Phys. B 883 (2014) 615 [arXiv:1311.1415] [INSPIRE].

    ADS  Google Scholar 

  121. NNPDF collaboration, Charged hadron fragmentation functions from collider data, Eur. Phys. J. C 78 (2018) 651 [arXiv:1807.03310] [INSPIRE].

  122. NNPDF collaboration, A determination of the fragmentation functions of pions, kaons, and protons with faithful uncertainties, Eur. Phys. J. C 77 (2017) 516 [arXiv:1706.07049] [INSPIRE].

  123. S. Albino, B.A. Kniehl and G. Kramer, Fragmentation functions for light charged hadrons with complete quark flavor separation, Nucl. Phys. B 725 (2005) 181 [hep-ph/0502188] [INSPIRE].

    ADS  Google Scholar 

  124. M. Hirai, S. Kumano, T.-H. Nagai and K. Sudoh, Determination of fragmentation functions and their uncertainties, Phys. Rev. D 75 (2007) 094009 [hep-ph/0702250] [INSPIRE].

    ADS  Google Scholar 

  125. J.L. Albacete et al., Predictions for cold nuclear matter effects in p+Pb collisions at \( \sqrt{s_{NN}} \) = 8.16 TeV, Nucl. Phys. A 972 (2018) 18 [arXiv:1707.09973] [INSPIRE].

  126. A. Garcia, R. Gauld, A. Heijboer and J. Rojo, Complete predictions for high-energy neutrino propagation in matter, JCAP 09 (2020) 025 [arXiv:2004.04756] [INSPIRE].

    ADS  Google Scholar 

  127. V. Bertone, R. Gauld and J. Rojo, Neutrino telescopes as QCD microscopes, JHEP 01 (2019) 217 [arXiv:1808.02034] [INSPIRE].

    ADS  Google Scholar 

  128. R. Abdul Khalek et al., Phenomenology of NNLO jet production at the LHC and its impact on parton distributions, Eur. Phys. J. C 80 (2020) 797 [arXiv:2005.11327] [INSPIRE].

    ADS  Google Scholar 

  129. CMS collaboration, Constraining gluon distributions in nuclei using dijets in proton-proton and proton-lead collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. Lett. 121 (2018) 062002 [arXiv:1805.04736] [INSPIRE].

  130. PROSA collaboration, Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x, Eur. Phys. J. C 75 (2015) 396 [arXiv:1503.04581] [INSPIRE].

  131. R. Gauld and J. Rojo, Precision determination of the small-x gluon from charm production at LHCb, Phys. Rev. Lett. 118 (2017) 072001 [arXiv:1610.09373] [INSPIRE].

    ADS  Google Scholar 

  132. K.J. Eskola, I. Helenius, P. Paakkinen and H. Paukkunen, A QCD analysis of LHCb D-meson data in p+Pb collisions, JHEP 05 (2020) 037 [arXiv:1906.02512] [INSPIRE].

    ADS  Google Scholar 

  133. J.J. Ethier, N. Sato and W. Melnitchouk, First simultaneous extraction of spin-dependent parton distributions and fragmentation functions from a global QCD analysis, Phys. Rev. Lett. 119 (2017) 132001 [arXiv:1705.05889] [INSPIRE].

    ADS  Google Scholar 

  134. A. Buckleys et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, VU Amsterdam, 1081HV, Amsterdam, The Netherlands

    Rabah Abdul Khalek, Jacob J. Ethier & Juan Rojo

  2. Nikhef Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Rabah Abdul Khalek, Jacob J. Ethier, Juan Rojo & Gijs van Weelden

Authors
  1. Rabah Abdul Khalek
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jacob J. Ethier
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Juan Rojo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Gijs van Weelden
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jacob J. Ethier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.14629

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalek, R.A., Ethier, J.J., Rojo, J. et al. nNNPDF2.0: quark flavor separation in nuclei from LHC data. J. High Energ. Phys. 2020, 183 (2020). https://doi.org/10.1007/JHEP09(2020)183

Download citation

  • Received: 03 July 2020

  • Accepted: 04 September 2020

  • Published: 28 September 2020

  • DOI: https://doi.org/10.1007/JHEP09(2020)183

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Deep Inelastic Scattering (Phenomenology)
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature