Skip to main content

Constraining the Chiral Magnetic Effect with charge-dependent azimuthal correlations in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 and 5.02 TeV

A preprint version of the article is available at arXiv.

Abstract

Systematic studies of charge-dependent two- and three-particle correlations in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 and 5.02 TeV used to probe the Chiral Magnetic Effect (CME) are presented. These measurements are performed for charged particles in the pseudorapidity (η) and transverse momentum (pT) ranges |η| < 0.8 and 0.2 < pT < 5 GeV/c. A significant charge-dependent signal that becomes more pronounced for peripheral collisions is reported for the CME-sensitive correlators γ1, 1 = 〈cos(φα + φβ − 2Ψ2)〉 and γ1, − 3 = 〈cos(φα − 3φβ + 2Ψ2)〉. The results are used to estimate the contribution of background effects, associated with local charge conservation coupled to anisotropic flow modulations, to measurements of the CME. A blast-wave parametrisation that incorporates local charge conservation tuned to reproduce the centrality dependent background effects is not able to fully describe the measured γ1,1. Finally, the charge and centrality dependence of mixed-harmonics three-particle correlations, of the form γ1, 2 = 〈cos(φα + 2φβ − 3Ψ3)〉, which are insensitive to the CME signal, verify again that background contributions dominate the measurement of γ1,1.

References

  1. E.V. Shuryak, Theory and phenomenology of the QCD vacuum, Phys. Rept. 115 (1984) 151 [INSPIRE].

    ADS  Article  Google Scholar 

  2. J. Cleymans, R.V. Gavai and E. Suhonen, Quarks and gluons at high temperatures and densities, Phys. Rept. 130 (1986) 217 [INSPIRE].

    ADS  Article  Google Scholar 

  3. S.A. Bass, M. Gyulassy, H. Stoecker and W. Greiner, Signatures of quark gluon plasma formation in high-energy heavy ion collisions: a critical review, J. Phys. G 25 (1999) R1 [hep-ph/9810281] [INSPIRE].

  4. S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].

    ADS  Article  Google Scholar 

  5. T. Bhattacharya et al., QCD phase transition with chiral quarks and physical quark masses, Phys. Rev. Lett. 113 (2014) 082001 [arXiv:1402.5175] [INSPIRE].

  6. T.D. Lee, A theory of spontaneous T violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].

    ADS  Article  Google Scholar 

  7. T.D. Lee and G.C. Wick, Vacuum stability and vacuum excitation in a spin 0 field theory, Phys. Rev. D 9 (1974) 2291 [INSPIRE].

    ADS  Article  Google Scholar 

  8. A. Bzdak and V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions, Phys. Lett. B 710 (2012) 171 [arXiv:1111.1949] [INSPIRE].

  9. P.D. Morley and I.A. Schmidt, Strong P, CP, T violations in heavy ion collisions, Z. Phys. C 26 (1985) 627 [INSPIRE].

    ADS  Article  Google Scholar 

  10. D. Kharzeev, R.D. Pisarski and M.H.G. Tytgat, Possibility of spontaneous parity violation in hot QCD, Phys. Rev. Lett. 81 (1998) 512 [hep-ph/9804221] [INSPIRE].

  11. D. Kharzeev and R.D. Pisarski, Pionic measures of parity and CP-violation in high-energy nuclear collisions, Phys. Rev. D 61 (2000) 111901 [hep-ph/9906401] [INSPIRE].

  12. D.E. Kharzeev, The Chiral Magnetic Effect and anomaly-induced transport, Prog. Part. Nucl. Phys. 75 (2014) 133 [arXiv:1312.3348] [INSPIRE].

    ADS  Article  Google Scholar 

  13. D.E. Kharzeev, Topology, magnetic field, and strongly interacting matter, Ann. Rev. Nucl. Part. Sci. 65 (2015) 193 [arXiv:1501.01336] [INSPIRE].

  14. D. Kharzeev and A. Zhitnitsky, Charge separation induced by P-odd bubbles in QCD matter, Nucl. Phys. A 797 (2007) 67 [arXiv:0706.1026] [INSPIRE].

  15. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

  16. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

  17. Q. Li et al., Observation of the chiral magnetic effect in ZrTe5, Nature Phys. 12 (2016) 550 [arXiv:1412.6543] [INSPIRE].

    ADS  Article  Google Scholar 

  18. S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys. C 70 (1996) 665 [hep-ph/9407282] [INSPIRE].

  19. PHOBOS collaboration, System size, energy and pseudorapidity dependence of directed and elliptic flow at RHIC, Nucl. Phys. A 774 (2006) 523 [nucl-ex/0510031] [INSPIRE].

  20. R.S. Bhalerao and J.-Y. Ollitrault, Eccentricity fluctuations and elliptic flow at RHIC, Phys. Lett. B 641 (2006) 260 [nucl-th/0607009] [INSPIRE].

  21. PHOBOS collaboration, Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions, Phys. Rev. C 77 (2008) 014906 [arXiv:0711.3724] [INSPIRE].

  22. B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 054905 [Erratum ibid. 82 (2010) 039903] [arXiv:1003.0194] [INSPIRE].

  23. B.H. Alver, C. Gombeaud, M. Luzum and J.-Y. Ollitrault, Triangular flow in hydrodynamics and transport theory, Phys. Rev. C 82 (2010) 034913 [arXiv:1007.5469] [INSPIRE].

  24. S.A. Voloshin, Parity violation in hot QCD: How to detect it, Phys. Rev. C 70 (2004) 057901 [hep-ph/0406311] [INSPIRE].

  25. ALICE collaboration, Charge separation relative to the reaction plane in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. Lett. 110 (2013) 012301 [arXiv:1207.0900] [INSPIRE].

  26. STAR collaboration, Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett. 103 (2009) 251601 [arXiv:0909.1739] [INSPIRE].

  27. STAR collaboration, Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions, Phys. Rev. C 81 (2010) 054908 [arXiv:0909.1717] [INSPIRE].

  28. STAR collaboration, Measurement of charge multiplicity asymmetry correlations in high-energy nucleus-nucleus collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. C 89 (2014) 044908 [arXiv:1303.0901] [INSPIRE].

  29. STAR collaboration, Fluctuations of charge separation perpendicular to the event plane and local parity violation in \( \sqrt{s_{NN}} \) = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C 88 (2013) 064911 [arXiv:1302.3802] [INSPIRE].

  30. STAR collaboration, Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC, Phys. Rev. Lett. 113 (2014) 052302 [arXiv:1404.1433] [INSPIRE].

  31. S. Schlichting and S. Pratt, Charge conservation at energies available at the BNL Relativistic Heavy Ion Collider and contributions to local parity violation observables, Phys. Rev. C 83 (2011) 014913 [arXiv:1009.4283] [INSPIRE].

  32. S. Pratt, S. Schlichting and S. Gavin, Effects of momentum conservation and flow on angular correlations at RHIC, Phys. Rev. C 84 (2011) 024909 [arXiv:1011.6053] [INSPIRE].

  33. ALICE collaboration, Constraining the magnitude of the Chiral Magnetic Effect with event shape engineering in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 777 (2018) 151 [arXiv:1709.04723] [INSPIRE].

  34. J. Schukraft, A. Timmins and S.A. Voloshin, Ultra-relativistic nuclear collisions: event shape engineering, Phys. Lett. B 719 (2013) 394 [arXiv:1208.4563] [INSPIRE].

  35. CMS collaboration, Observation of charge-dependent azimuthal correlations in p-Pb collisions and its implication for the search for the chiral magnetic effect, Phys. Rev. Lett. 118 (2017) 122301 [arXiv:1610.00263] [INSPIRE].

  36. STAR collaboration, Charge-dependent pair correlations relative to a third particle in p+Au and d+Au collisions at RHIC, Phys. Lett. B 798 (2019) 134975 [arXiv:1906.03373] [INSPIRE].

  37. CMS collaboration, Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 044912 [arXiv:1708.01602] [INSPIRE].

  38. ATLAS collaboration, Measurement of event-plane correlations in \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 90 (2014) 024905 [arXiv:1403.0489] [INSPIRE].

  39. S.A. Voloshin, Collective phenomena in ultra-relativistic nuclear collisions: anisotropic flow and more, Prog. Part. Nucl. Phys. 67 (2012) 541 [arXiv:1111.7241] [INSPIRE].

  40. ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  41. J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].

    ADS  Article  Google Scholar 

  42. ALICE collaboration, Performance of the ALICE VZERO system, 2013 JINST 8 P10016 [arXiv:1306.3130] [INSPIRE].

  43. ALICE collaboration, Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  44. ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  45. P. Billoir, Track fitting with multiple scattering: a new method, Nucl. Instrum. Meth. A 225 (1984) 352 [INSPIRE].

    Article  Google Scholar 

  46. P. Billoir, R. Fruhwirth and M. Regler, Track element merging strategy and vertex fitting in complex modular detectors, Nucl. Instrum. Meth. A 241 (1985) 115 [INSPIRE].

    ADS  Article  Google Scholar 

  47. U. Gursoy, D. Kharzeev, E. Marcus, K. Rajagopal and C. Shen, Charge-dependent flow induced by magnetic and electric fields in heavy ion collisions, Phys. Rev. C 98 (2018) 055201 [arXiv:1806.05288] [INSPIRE].

  48. A. Bzdak, V. Koch and J. Liao, Charge-dependent correlations in relativistic heavy ion collisions and the chiral magnetic effect, Lect. Notes Phys. 871 (2013) 503 [arXiv:1207.7327] [INSPIRE].

  49. F. Retiere and M.A. Lisa, Observable implications of geometrical and dynamical aspects of freeze out in heavy ion collisions, Phys. Rev. C 70 (2004) 044907 [nucl-th/0312024] [INSPIRE].

  50. B. Zhang, C.M. Ko, B.-A. Li and Z.-w. Lin, A multiphase transport model for nuclear collisions at RHIC, Phys. Rev. C 61 (2000) 067901 [nucl-th/9907017] [INSPIRE].

  51. Z.-w. Lin, S. Pal, C.M. Ko, B.-A. Li and B. Zhang, Charged particle rapidity distributions at relativistic energies, Phys. Rev. C 64 (2001) 011902 [nucl-th/0011059] [INSPIRE].

  52. Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang and S. Pal, A multi-phase transport model for relativistic heavy ion collisions, Phys. Rev. C 72 (2005) 064901 [nucl-th/0411110] [INSPIRE].

  53. A.M. Poskanzer and S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58 (1998) 1671 [nucl-ex/9805001] [INSPIRE].

  54. S.A. Voloshin, A.M. Poskanzer and R. Snellings, Collective phenomena in non-central nuclear collisions, in Relativistic heavy ion physics, R. Stock ed., Landolt-Bornstein volume 23, Springer, Germany (2010) [arXiv:0809.2949] [INSPIRE].

  55. R. Barlow, Systematic errors: Facts and fictions, in the proceedings of the Conference on Advanced Statistical Techniques in Particle Physics, March 18–22, Durham U.K. (2002) [hep-ex/0207026] [INSPIRE].

  56. ALICE collaboration, Charge correlations using the balance function in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett. B 723 (2013) 267 [arXiv:1301.3756] [INSPIRE].

  57. ALICE collaboration, Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions at the LHC, Eur. Phys. J. C 76 (2016) 86 [arXiv:1509.07255] [INSPIRE].

  58. ALICE collaboration, Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 and 2.76 TeV, JHEP 07 (2018) 103 [arXiv:1804.02944] [INSPIRE].

  59. ALICE collaboration, Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic pp collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, Phys. Rev. C 101 (2020) 044907 [arXiv:1910.07678] [INSPIRE].

  60. ALICE collaboration, Anisotropic flow of identified particles in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 5.02 TeV, JHEP 09 (2018) 006 [arXiv:1805.04390] [INSPIRE].

  61. B. Zhang, ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions, Comput. Phys. Commun. 109 (1998) 193 [nucl-th/9709009] [INSPIRE].

  62. ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].

  63. S. Choudhury, G. Wang, W. He, Y. Hu and H.Z. Huang, Background evaluations for the chiral magnetic effect with normalized correlators using a multiphase transport model, Eur. Phys. J. C 80 (2020) 383 [arXiv:1909.04083] [INSPIRE].

  64. S.A. Voloshin, A.M. Poskanzer, A. Tang and G. Wang, Elliptic flow in the Gaussian model of eccentricity fluctuations, Phys. Lett. B 659 (2008) 537 [arXiv:0708.0800] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors