Abstract
We study a T 2 deformation of large N conformal field theories, a higher dimensional generalization of the \( T\overline{T} \) deformation. The deformed partition function satisfies a flow equation of the diffusion type. We solve this equation by finding its diffusion kernel, which is given by the Euclidean gravitational path integral in d + 1 dimensions between two boundaries with Dirichlet boundary conditions for the metric. This is natural given the connection between the flow equation and the Wheeler-DeWitt equation, on which we offer a new perspective by giving a gauge-invariant relation between the deformed partition function and the radial WDW wave function. An interesting output of the flow equation is the gravitational path integral measure which is consistent with a constrained phase space quantization. Finally, we comment on the relation between the radial wave function and the Hartle-Hawking wave functions dual to states in the CFT, and propose a way of obtaining the volume of the maximal slice from the T 2 deformation.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].
J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].
I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].
T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].
L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].
P. Kraus, J. Liu and D. Marolf, Cutoff AdS3 versus the \( T\overline{T} \) deformation, JHEP 07 (2018) 027 [arXiv:1801.02714] [INSPIRE].
M. Guica and R. Monten, \( T\overline{T} \) and the mirage of a bulk cutoff, arXiv:1906.11251 [INSPIRE].
A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
Y. Jiang, Lectures on solvable irrelevant deformations of 2d quantum field theory, arXiv:1904.13376 [INSPIRE].
D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, \( T\overline{T} \) in AdS2 and quantum mechanics, Phys. Rev. D 101 (2020) 026011 [arXiv:1907.04873] [INSPIRE].
D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, Hamiltonian deformations in quantum mechanics, \( T\overline{T} \), and the SYK model, Phys. Rev. D 102 (2020) 046019 [arXiv:1912.06132] [INSPIRE].
L.V. Iliesiu, J. Kruthoff, G.J. Turiaci and H. Verlinde, JT gravity at finite cutoff, arXiv:2004.07242 [INSPIRE].
D. Stanford and Z. Yang, Finite-cutoff JT gravity and self-avoiding loops, arXiv:2004.08005 [INSPIRE].
G. Bonelli, N. Doroud and M. Zhu, \( T\overline{T} \)-deformations in closed form, JHEP 06 (2018) 149 [arXiv:1804.10967] [INSPIRE].
M. Taylor, TT deformations in general dimensions, arXiv:1805.10287 [INSPIRE].
T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a T 2 deformation, JHEP 03 (2019) 004 [arXiv:1807.11401] [INSPIRE].
J. Cardy, The \( T\overline{T} \) deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].
S. Datta and Y. Jiang, \( T\overline{T} \)deformed partition functions, JHEP 08 (2018) 106 [arXiv:1806.07426] [INSPIRE].
L. Freidel, Reconstructing AdS/CFT, arXiv:0804.0632 [INSPIRE].
E.A. Mazenc, V. Shyam and R.M. Soni, A \( T\overline{T} \)deformation for curved spacetimes from 3d gravity, arXiv:1912.09179 [INSPIRE].
M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [Erratum ibid. 03 (2014) 092] [arXiv:1006.4518] [INSPIRE].
V. Shyam, Finite cutoff AdS5 holography and the generalized gradient flow, JHEP 12 (2018) 086 [arXiv:1808.07760] [INSPIRE].
J. Cardy, \( T\overline{T} \) deformation of correlation functions, JHEP 19 (2020) 160 [arXiv:1907.03394] [INSPIRE].
W. Donnelly and V. Shyam, Entanglement entropy and \( T\overline{T} \) deformation, Phys. Rev. Lett. 121 (2018) 131602 [arXiv:1806.07444] [INSPIRE].
A. Banerjee, A. Bhattacharyya and S. Chakraborty, Entanglement entropy for TT deformed CFT in general dimensions, Nucl. Phys. B 948 (2019) 114775 [arXiv:1904.00716] [INSPIRE].
C. Murdia, Y. Nomura, P. Rath and N. Salzetta, Comments on holographic entanglement entropy in \( T\overline{T} \) deformed conformal field theories, Phys. Rev. D 100 (2019) 026011 [arXiv:1904.04408] [INSPIRE].
C.W. Misner, Feynman quantization of general relativity, Rev. Mod. Phys. 29 (1957) 497 [INSPIRE].
H. Leutwyler, Gravitational field: Equivalence of Feynman quantization and canonical quantization, Phys. Rev. 134 (1964) B1155 [INSPIRE].
L.D. Faddeev and V.N. Popov, Covariant quantization of the gravitational field, Sov. Phys. Usp. 16 (1974) 777 [Sov.Phys.Usp. 16 (1974) 777] [INSPIRE].
E.S. Fradkin and G.A. Vilkovisky, S matrix for gravitational field. II. Local measure, general relations, elements of renormalization theory, Phys. Rev. D 8 (1973) 4241 [INSPIRE].
E. Fradkin and G. Vilkovisky, Quantization of relativistic systems with constraints: equivalence of canonical and covariant formalisms in quantum theory of gravitational field, CERN-TH-2332 (1977).
A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].
P.O. Mazur and E. Mottola, The gravitational measure, solution of the conformal factor problem and stability of the ground state of quantum gravity, Nucl. Phys. B 341 (1990) 187 [INSPIRE].
R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical structure and definition of energy in general relativity, Phys. Rev. 116 (1959) 1322 [INSPIRE].
M. Han, Canonical path-integral measures for holst and Plebanski gravity. II. Gauge invariance and physical inner product, Class. Quant. Grav. 27 (2010) 245015 [arXiv:0911.3436] [INSPIRE].
J. Hartle and S. Hawking, Wave function of the Universe, Adv. Ser. Astrophys. Cosmol. 3 (1987) 174.
K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].
M. Botta-Cantcheff, P. Mart́ınez and G.A. Silva, On excited states in real-time AdS/CFT, JHEP 02 (2016) 171 [arXiv:1512.07850] [INSPIRE].
D. Marolf, O. Parrikar, C. Rabideau, A. Izadi Rad and M. Van Raamsdonk, From Euclidean sources to Lorentzian spacetimes in holographic conformal field theories, JHEP 06 (2018) 077 [arXiv:1709.10101] [INSPIRE].
A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].
V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].
M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].
S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].
P. Caputa, S. Datta and V. Shyam, Sphere partition functions & cut-off AdS, JHEP 05 (2019) 112 [arXiv:1902.10893] [INSPIRE].
P. Mansfield and D. Nolland, One loop conformal anomalies from AdS/CFT in the Schrödinger representation, JHEP 07 (1999) 028 [hep-th/9906054] [INSPIRE].
P. Caputa and S. Hirano, Airy function and 4d quantum gravity, JHEP 06 (2018) 106 [arXiv:1804.00942] [INSPIRE].
S.-S. Lee, Background independent holographic description: from matrix field theory to quantum gravity, JHEP 10 (2012) 160 [arXiv:1204.1780] [INSPIRE].
S.-S. Lee, Quantum renormalization group and holography, JHEP 01 (2014) 076 [arXiv:1305.3908] [INSPIRE].
K.-S. Kim and S. Ryu, Entanglement transfer from quantum matter to classical geometry in an emergent holographic dual description of a scalar field theory, arXiv:2003.00165 [INSPIRE].
K.-S. Kim, Emergent geometry in recursive renormalization group transformations, Nucl. Phys. B 959 (2020) 115144 [arXiv:2004.09997] [INSPIRE].
V. Shyam, General covariance from the quantum renormalization group, Phys. Rev. D 95 (2017) 066003 [arXiv:1611.05315] [INSPIRE].
V. Shyam, Connecting holographic Wess-Zumino consistency condition to the holographic anomaly, JHEP 03 (2018) 171 [arXiv:1712.07955] [INSPIRE].
L.D. Faddeev and V.N. Popov, Feynman diagrams for the Yang-Mills field, Phys. Lett. B 25 (1967) 29 [INSPIRE].
L. Parker, Path integrals for a particle in curved space, Phys. Rev. D 19 (1979) 438 [INSPIRE].
J.J. Halliwell, Derivation of the Wheeler-De Witt equation from a path integral for minisuperspace models, Phys. Rev. D 38 (1988) 2468 [INSPIRE].
A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett. B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].
J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].
E. Witten, Canonical quantization in Anti de Sitter space, talk given at PCTS — 20 Years Later: The Many Faces of AdS/CFT, October 31–November 3, Princeton, U.S.A. (2017).
E. Witten, A note on boundary conditions in Euclidean gravity, arXiv:1805.11559 [INSPIRE].
Y. Jiang, Expectation value of \( T\overline{T} \) operator in curved spacetimes, JHEP 02 (2020) 094 [arXiv:1903.07561] [INSPIRE].
T.D. Brennan, C. Ferko, E. Martinec and S. Sethi, Defining the \( T\overline{T} \) Deformation on AdS2 , arXiv:2005.00431 [INSPIRE].
L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 24 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].
D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
J. Kruthoff and O. Parrikar, On the flow of states under \( T\overline{T} \) , arXiv:2006.03054 [INSPIRE].
H. Geng, \( T\overline{T} \) deformation and the Complexity=Volume conjecture, Fortsch. Phys. (2020) 2000036 [arXiv:1910.08082] [INSPIRE].
I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].
N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions from conformal field theory, JHEP 12 (2017) 049 [arXiv:1610.09378] [INSPIRE].
A. Belin, D.M. Hofman and G. Mathys, Einstein gravity from ANEC correlators, JHEP 08 (2019) 032 [arXiv:1904.05892] [INSPIRE].
M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, superconvergence, and a stringy equivalence principle, arXiv:1904.05905 [INSPIRE].
V. Gorbenko, E. Silverstein and G. Torroba, dS/dS and \( T\overline{T} \), JHEP 03 (2019) 085 [arXiv:1811.07965] [INSPIRE].
E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].
S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].
O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2006.01835
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Belin, A., Lewkowycz, A. & Sárosi, G. Gravitational path integral from the T 2 deformation. J. High Energ. Phys. 2020, 156 (2020). https://doi.org/10.1007/JHEP09(2020)156
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2020)156