Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Matching and running sensitivity in non-renormalizable inflationary models

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 17 September 2020
  • Volume 2020, article number 114, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Matching and running sensitivity in non-renormalizable inflationary models
Download PDF
  • Jacopo Fumagalli1,
  • Marieke Postma2 &
  • Melvin van den Bout2 
  • 278 Accesses

  • 12 Citations

  • 8 Altmetric

  • 1 Mention

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Most of the inflationary models that are in agreement with the Planck data rely on the presence of non-renormalizable operators. If the connection to low energy particle physics is made, the renormalization group (RG) introduces a sensitivity to ultraviolet (UV) physics that can be crucial in determining the inflationary predictions. We analyse this effect for the Standard Model (SM) augmented with non-minimal derivative couplings to gravity. Our set-up reduces to the SM for small values of the Higgs field, and allows for inflation in the opposite large field regime. The one-loop beta functions in the inflationary region are calculated using a covariant approach that properly accounts for the non-trivial structure of the field space manifold. We run the SM parameters from the electroweak to the inflationary scale, matching the couplings of the different effective field theories at the boundary between the two regimes, where we also include threshold corrections that parametrize effects from UV physics. We then compute the spectral index and tensor-to-scalar ratio and find that RG flow corrections can be determinant: a scenario that is ruled out at tree level can be resurrected and vice versa.

Article PDF

Download to read the full article text

Similar content being viewed by others

Loop Corrections to Standard Model fields in inflation

Article Open access 08 August 2016

Renormalization-group improved inflationary scenarios

Article 16 March 2017

Standard Model mass spectrum in inflationary universe

Article Open access 11 April 2017
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].

  2. J. Martin, C. Ringeval and V. Vennin, Encyclopædia Inflationaris, Phys. Dark Univ. 5–6 (2014) 75 [arXiv:1303.3787] [INSPIRE].

    Google Scholar 

  3. E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].

    ADS  Google Scholar 

  4. D. Baumann and L. McAllister, Inflation and String Theory, in Cambridge Monographs on Mathematical Physics , Cambridge University Press (2015) [arXiv:1404.2601] [INSPIRE].

  5. C.P. Burgess, S.P. Patil and M. Trott, On the Predictiveness of Single-Field Inflationary Models, JHEP 06 (2014) 010 [arXiv:1402.1476] [INSPIRE].

    ADS  Google Scholar 

  6. J. Fumagalli and M. Postma, UV (in)sensitivity of Higgs inflation, JHEP 05 (2016) 049 [arXiv:1602.07234] [INSPIRE].

    ADS  Google Scholar 

  7. C. Germani and A. Kehagias, New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity, Phys. Rev. Lett. 105 (2010) 011302 [arXiv:1003.2635] [INSPIRE].

    ADS  Google Scholar 

  8. C. Germani, Spontaneous localization on a brane via a gravitational mechanism, Phys. Rev. D 85 (2012) 055025 [arXiv:1109.3718] [INSPIRE].

    ADS  Google Scholar 

  9. S. Di Vita and C. Germani, Electroweak vacuum stability and inflation via nonminimal derivative couplings to gravity, Phys. Rev. D 93 (2016) 045005 [arXiv:1508.04777] [INSPIRE].

    ADS  Google Scholar 

  10. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    ADS  MATH  Google Scholar 

  11. F. Bezrukov, J. Rubio and M. Shaposhnikov, Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D 92 (2015) 083512 [arXiv:1412.3811] [INSPIRE].

    ADS  Google Scholar 

  12. F. Bezrukov and M. Shaposhnikov, Higgs inflation at the critical point, Phys. Lett. B 734 (2014) 249 [arXiv:1403.6078] [INSPIRE].

    ADS  Google Scholar 

  13. V.-M. Enckell, K. Enqvist and S. Nurmi, Observational signatures of Higgs inflation, JCAP 07 (2016) 047 [arXiv:1603.07572] [INSPIRE].

    ADS  Google Scholar 

  14. F. Bezrukov, M. Pauly and J. Rubio, On the robustness of the primordial power spectrum in renormalized Higgs inflation, JCAP 02 (2018) 040 [arXiv:1706.05007] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. J. Fumagalli, S. Mooij and M. Postma, Unitarity and predictiveness in new Higgs inflation, JHEP 03 (2018) 038 [arXiv:1711.08761] [INSPIRE].

    ADS  MATH  Google Scholar 

  16. F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    ADS  Google Scholar 

  17. K. Kamada, T. Kobayashi, T. Takahashi, M. Yamaguchi and J. Yokoyama, Generalized Higgs inflation, Phys. Rev. D 86 (2012) 023504 [arXiv:1203.4059] [INSPIRE].

    ADS  Google Scholar 

  18. J. Rubio, Higgs inflation, Front. Astron. Space Sci. 5 (2019) 50 [arXiv:1807.02376] [INSPIRE].

    ADS  Google Scholar 

  19. F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089 [arXiv:0904.1537] [INSPIRE].

    ADS  Google Scholar 

  20. F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].

    ADS  MATH  Google Scholar 

  21. A. De Simone, M.P. Hertzberg and F. Wilczek, Running Inflation in the Standard Model, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946] [INSPIRE].

    ADS  Google Scholar 

  22. A.O. Bärvinsky, A.Y. Kamenshchik and A.A. Starobinsky, Inflation scenario via the Standard Model Higgs boson and LHC, JCAP 11 (2008) 021 [arXiv:0809.2104] [INSPIRE].

    ADS  Google Scholar 

  23. A.O. Bärvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C. Steinwachs, Asymptotic freedom in inflationary cosmology with a non-minimally coupled Higgs field, JCAP 12 (2009) 003 [arXiv:0904.1698] [INSPIRE].

    ADS  Google Scholar 

  24. A.O. Bärvinsky, A.Y. Kamenshchik, C. Kiefer, A.A. Starobinsky and C.F. Steinwachs, Higgs boson, renormalization group, and naturalness in cosmology, Eur. Phys. J. C 72 (2012) 2219 [arXiv:0910.1041] [INSPIRE].

    ADS  Google Scholar 

  25. D.P. George, S. Mooij and M. Postma, Quantum corrections in Higgs inflation: the real scalar case, JCAP 02 (2014) 024 [arXiv:1310.2157] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. D.P. George, S. Mooij and M. Postma, Quantum corrections in Higgs inflation: the Standard Model case, JCAP 04 (2016) 006 [arXiv:1508.04660] [INSPIRE].

    ADS  Google Scholar 

  27. M.P. Hertzberg, Can Inflation be Connected to Low Energy Particle Physics?, JCAP 08 (2012) 008 [arXiv:1110.5650] [INSPIRE].

    ADS  Google Scholar 

  28. J.L.F. Barbón, J.A. Casas, J. Elias-Miro and J.R. Espinosa, Higgs Inflation as a Mirage, JHEP 09 (2015) 027 [arXiv:1501.02231] [INSPIRE].

    Google Scholar 

  29. J. Fumagalli, Renormalization Group independence of Cosmological Attractors, Phys. Lett. B 769 (2017) 451 [arXiv:1611.04997] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. F. Bauer and D.A. Demir, Inflation with Non-Minimal Coupling: Metric versus Palatini Formulations, Phys. Lett. B 665 (2008) 222 [arXiv:0803.2664] [INSPIRE].

    ADS  Google Scholar 

  31. S. Räsänen and P. Wahlman, Higgs inflation with loop corrections in the Palatini formulation, JCAP 11 (2017) 047 [arXiv:1709.07853] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. V.-M. Enckell, K. Enqvist, S. Räsänen and E. Tomberg, Higgs inflation at the hilltop, JCAP 06 (2018) 005 [arXiv:1802.09299] [INSPIRE].

    Google Scholar 

  33. S. Räsänen, Higgs inflation in the Palatini formulation with kinetic terms for the metric, Open J. Astrophys. 2 (2019) 1 [arXiv:1811.09514] [INSPIRE].

    Google Scholar 

  34. A. Racioppi, Non-Minimal (Self-)Running Inflation: Metric vs. Palatini Formulation, arXiv:1912.10038 [INSPIRE].

  35. F. Bauer and D.A. Demir, Higgs-Palatini Inflation and Unitarity, Phys. Lett. B 698 (2011) 425 [arXiv:1012.2900] [INSPIRE].

    ADS  Google Scholar 

  36. A. Escrivà and C. Germani, Beyond dimensional analysis: Higgs and new Higgs inflations do not violate unitarity, Phys. Rev. D 95 (2017) 123526 [arXiv:1612.06253] [INSPIRE].

    ADS  Google Scholar 

  37. M. Galante, R. Kallosh, A. Linde and D. Roest, Unity of Cosmological Inflation Attractors, Phys. Rev. Lett. 114 (2015) 141302 [arXiv:1412.3797] [INSPIRE].

    ADS  Google Scholar 

  38. G.A. Vilkovisky, The Unique Effective Action in Quantum Field Theory, Nucl. Phys. B 234 (1984) 125 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. J.-O. Gong and T. Tanaka, A covariant approach to general field space metric in multi-field inflation, JCAP 03 (2011) 015 [Erratum JCAP 02 (2012) E01] [arXiv:1101.4809] [INSPIRE].

  40. J. Fumagalli, S. Renaux-Petel and J.W. Ronayne, Higgs vacuum (in)stability during inflation: the dangerous relevance of de Sitter departure and Planck-suppressed operators, JHEP 02 (2020) 142 [arXiv:1910.13430] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. B.S. DeWitt, Dynamical theory of groups and fields, Conf. Proc. C 630701 (1964) 585 [INSPIRE].

    MathSciNet  Google Scholar 

  42. M. Sasaki and E.D. Stewart, A General analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71 [astro-ph/9507001] [INSPIRE].

    ADS  Google Scholar 

  43. S. Groot Nibbelink and B.J.W. van Tent, Scalar perturbations during multiple field slow-roll inflation, Class. Quant. Grav. 19 (2002) 613 [hep-ph/0107272] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  44. A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma and S.P. Patil, Features of heavy physics in the CMB power spectrum, JCAP 01 (2011) 030 [arXiv:1010.3693] [INSPIRE].

    ADS  Google Scholar 

  45. R. Alonso, E.E. Jenkins and A.V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].

    ADS  MATH  Google Scholar 

  46. R. Alonso, E.E. Jenkins and A.V. Manohar, Geometry of the Scalar Sector, JHEP 08 (2016) 101 [arXiv:1605.03602] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  47. A. Helset, M. Paraskevas and M. Trott, Gauge fixing the Standard Model Effective Field Theory, Phys. Rev. Lett. 120 (2018) 251801 [arXiv:1803.08001] [INSPIRE].

    ADS  Google Scholar 

  48. R. Nagai, M. Tanabashi, K. Tsumura and Y. Uchida, Symmetry and geometry in a generalized Higgs effective field theory: Finiteness of oblique corrections versus perturbative unitarity, Phys. Rev. D 100 (2019) 075020 [arXiv:1904.07618] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  49. A. Helset, A. Martin and M. Trott, The Geometric Standard Model Effective Field Theory, JHEP 03 (2020) 163 [arXiv:2001.01453] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. R. Alonso, A covariant momentum representation for loop corrections in gravity, JHEP 05 (2020) 131 [arXiv:1912.09671] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. C.F. Steinwachs and A.Y. Kamenshchik, Non-minimal Higgs Inflation and Frame Dependence in Cosmology, AIP Conf. Proc. 1514 (2013) 161 [arXiv:1301.5543] [INSPIRE].

    ADS  Google Scholar 

  52. K. Falls and M. Herrero-Valea, Frame (In)equivalence in Quantum Field Theory and Cosmology, Eur. Phys. J. C 79 (2019) 595 [arXiv:1812.08187] [INSPIRE].

    ADS  Google Scholar 

  53. K. Finn, S. Karamitsos and A. Pilaftsis, Frame Covariance in Quantum Gravity, Phys. Rev. D 102 (2020) 045014 [arXiv:1910.06661] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. E.S. Fradkin and A.A. Tseytlin, On the New Definition of Off-shell Effective Action, Nucl. Phys. B 234 (1984) 509 [INSPIRE].

    ADS  Google Scholar 

  55. B.S. DeWitt, Quantum Theory of Gravity. 2. The Manifestly Covariant Theory, Phys. Rev. 162 (1967) 1195 [INSPIRE].

    ADS  MATH  Google Scholar 

  56. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    ADS  Google Scholar 

  57. A.H. Hoang, The Top Mass: Interpretation and Theoretical Uncertainties, in proceedings of the 7th International Workshop on Top Quark Physics (TOP2014), Cannes, France, 28 September–3 October 2014, arXiv:1412.3649 [INSPIRE].

  58. P. Nason, The Top Mass in Hadronic Collisions, in From My Vast Repertoire. . . : Guido Altarelli’s Legacy , A. Levy, S. Forte and G. Ridolfi eds., World Scientific (2019), pp. 123–151 [arXiv:1712.02796] [INSPIRE].

  59. Particle Data Group, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  60. M.-x. Luo and Y. Xiao, Two loop renormalization group equations in the standard model, Phys. Rev. Lett. 90 (2003) 011601 [hep-ph/0207271] [INSPIRE].

    ADS  Google Scholar 

  61. A. Urbano, Inflation without gauge redundancy, JCAP 04 (2020) 040 [arXiv:2001.05480] [INSPIRE].

    ADS  Google Scholar 

  62. Planck collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

  63. M. Shaposhnikov, A. Shkerin and S. Zell, Quantum Effects in Palatini Higgs Inflation, JCAP 07 (2020) 064 [arXiv:2002.07105] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institut d’Astrophysique de Paris, GReCO, UMR 7095 du CNRS et de Sorbonne Université, 98bis boulevard Arago, 75014, Paris, France

    Jacopo Fumagalli

  2. Nikhef, Science Park 105, Amsterdam, 1098 XG, The Netherlands

    Marieke Postma & Melvin van den Bout

Authors
  1. Jacopo Fumagalli
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Marieke Postma
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Melvin van den Bout
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jacopo Fumagalli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.05905

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fumagalli, J., Postma, M. & van den Bout, M. Matching and running sensitivity in non-renormalizable inflationary models. J. High Energ. Phys. 2020, 114 (2020). https://doi.org/10.1007/JHEP09(2020)114

Download citation

  • Received: 28 May 2020

  • Accepted: 09 August 2020

  • Published: 17 September 2020

  • DOI: https://doi.org/10.1007/JHEP09(2020)114

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Higgs Physics
  • Renormalization Group
  • Effective Field Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature