Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Supersymmetric traversable wormholes

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 September 2020
  • Volume 2020, article number 109, (2020)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Supersymmetric traversable wormholes
Download PDF
  • Andrés Anabalón1,
  • Bernard de Wit2,3 &
  • Julio Oliva4 
  • 428 Accesses

  • 14 Citations

  • 4 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study traversable wormhole solutions in pure gauged N = 2 supergravity with and without electromagnetic fields, which are locally isometric under SO(2, 1) × SO(1, 1). The model allows for 1/2-BPS wormhole solutions whose corresponding globally defined Killing spinors are presented. A non-contractible cycle can be obtained by compactifying one of the coordinates which leaves the residual supersymmetry unaffected, although not all the isometries will remain realized globally. The wormholes connect two asymptotic, locally AdS4 regions and depend on certain electric and magnetic charge parameters and, implicitly, on the range of the compact coordinate around the throat. We provide an analysis of the boundary of the spacetime and show that it can be either disconnected or not, depending on the values of the parameters in the metric. Finally, we show how a class of these space-times avoid a topological censorship theorem.

Article PDF

Download to read the full article text

Similar content being viewed by others

Knitting wormholes by entanglement in supergravity

Article Open access 30 November 2020

Exploring supersymmetric wormholes in \( \mathcal{N} \) = 2 SYK with chords

Article Open access 21 December 2023

Wormhole solutions with NUT charge in higher curvature theories

Article Open access 22 November 2021
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R.W. Fuller and J.A. Wheeler, Causality and Multiply Connected Space-Time, Phys. Rev. 128 (1962) 919 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Einstein and N. Rosen, The Particle Problem in the General Theory of Relativity, Phys. Rev. 48 (1935) 73 [INSPIRE].

    Article  ADS  Google Scholar 

  3. M.S. Morris, K.S. Thorne and U. Yurtsever, Wormholes, Time Machines, and the Weak Energy Condition, Phys. Rev. Lett. 61 (1988) 1446 [INSPIRE].

    Article  ADS  Google Scholar 

  4. M.S. Morris and K.S. Thorne, Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity, Am. J. Phys. 56 (1988) 395 [INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Hochberg and M. Visser, The Null energy condition in dynamic wormholes, Phys. Rev. Lett. 81 (1998) 746 [gr-qc/9802048] [INSPIRE].

  6. E. Witten and S.-T. Yau, Connectedness of the boundary in the AdS/CFT correspondence, Adv. Theor. Math. Phys. 3 (1999) 1635 [hep-th/9910245] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  7. J.M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053 [hep-th/0401024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Anabalón and J. Oliva, Four-dimensional Traversable Wormholes and Bouncing Cosmologies in Vacuum, JHEP 04 (2019) 106 [arXiv:1811.03497] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].

  12. G.J. Galloway, K. Schleich, D. Witt and E. Woolgar, The AdS/CFT correspondence conjecture and topological censorship, Phys. Lett. B 505 (2001) 255 [hep-th/9912119] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. D.Z. Freedman and A.K. Das, Gauge Internal Symmetry in Extended Supergravity, Nucl. Phys. B 120 (1977) 221 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. E.S. Fradkin and M.A. Vasiliev, Model of supergravity with minimal electromagnetic interaction, Lebedev Institute preprint (1976) [INSPIRE].

  15. B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. 222 (1983) 516] [INSPIRE].

  16. B. de Wit and A. Van Proeyen, Potentials and Symmetries of General Gauged N = 2 Supergravity: Yang-Mills Models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity-Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  18. L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. O. Coussaert and M. Henneaux, Selfdual solutions of (2 + 1) Einstein gravity with a negative cosmological constant, in The Black Hole 25 Years After, pp. 25–39 (1994) [hep-th/9407181] [INSPIRE].

  20. H. Lü and J. Mei, Ricci-Flat and Charged Wormholes in Five Dimensions, Phys. Lett. B 666 (2008) 511 [arXiv:0806.3111] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. P.K. Townsend, Surprises with angular momentum, Annales Henri Poincaré 4 (2003) S183 [hep-th/0211008] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. I. Bengtsson and P. Sandin, Anti de Sitter space, squashed and stretched, Class. Quant. Grav. 23 (2006) 971 [gr-qc/0509076] [INSPIRE].

  23. J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

  24. P. Gao, D.L. Jafferis and A.C. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Avenida Padre Hurtado, 750, Viña del Mar, Chile

    Andrés Anabalón

  2. Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands

    Bernard de Wit

  3. Nikhef Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

    Bernard de Wit

  4. Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile

    Julio Oliva

Authors
  1. Andrés Anabalón
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Bernard de Wit
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Julio Oliva
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Andrés Anabalón.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2001.00606

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anabalón, A., de Wit, B. & Oliva, J. Supersymmetric traversable wormholes. J. High Energ. Phys. 2020, 109 (2020). https://doi.org/10.1007/JHEP09(2020)109

Download citation

  • Received: 08 January 2020

  • Revised: 29 July 2020

  • Accepted: 17 August 2020

  • Published: 16 September 2020

  • DOI: https://doi.org/10.1007/JHEP09(2020)109

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Spacetime Singularities
  • Supergravity Models
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature