Skip to main content

A new way of calculating the effective potential for a light radion

A preprint version of the article is available at arXiv.

Abstract

We address again the old problem of calculating the radion effective potential in Randall-Sundrum scenarios, with the Goldberger-Wise stabilization mechanism. Various prescriptions have been used in the literature, most of them based on heuristic derivations and then applied in some approximations. We define rigorously a light radion 4D effective action by using the interpolating field method. For a given choice of the interpolating field, defined as a functional of 5D fields, the radion effective action is uniquely defined by the procedure of integrating out the other fields, with the constrained 5D equations of motion always satisfied with help of the Lagrange multipliers. Thus, for a given choice of the interpolating fields we obtain a precise prescription for calculating the effective potential. Different choices of the interpolating fields give different prescriptions but in most cases very similar effective potentials. We confirm the correctness of one prescription used so far on a more heuristic basis and also find several new, much more economical, ways of calculating the radion effective potential. Our general considerations are illustrated by several numerical examples. It is shown that in some cases the old methods, especially in models with strong back-reaction, give results which are off even by orders of magnitude. Thus, our results are important e.g. for estimation of critical temperature in phase transitions.

References

  1. L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

  2. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].

  3. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

  4. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

  5. A. Falkowski and M. Pérez-Victoria, Electroweak Breaking on a Soft Wall, JHEP 12 (2008) 107 [arXiv:0806.1737] [INSPIRE].

  6. J.A. Cabrer, G. von Gersdorff and M. Quirós, Suppressing Electroweak Precision Observables in 5D Warped Models, JHEP 05 (2011) 083 [arXiv:1103.1388] [INSPIRE].

  7. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

  8. W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [INSPIRE].

  9. J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-Wall Stabilization, New J. Phys. 12 (2010) 075012 [arXiv:0907.5361] [INSPIRE].

  10. B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A Naturally Light Dilaton and a Small Cosmological Constant, Eur. Phys. J. C 74 (2014) 2790 [arXiv:1305.3919] [INSPIRE].

  11. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

  12. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].

  13. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].

  14. P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP 03 (2002) 051 [hep-th/0107141] [INSPIRE].

  15. M.A. Luty and R. Sundrum, Hierarchy stabilization in warped supersymmetry, Phys. Rev. D 64 (2001) 065012 [hep-th/0012158] [INSPIRE].

  16. J. Bagger, D. Nemeschansky and R.-J. Zhang, Supersymmetric radion in the Randall-Sundrum scenario, JHEP 08 (2001) 057 [hep-th/0012163] [INSPIRE].

  17. J. Bagger and M. Redi, Radion effective theory in the detuned Randall-Sundrum model, JHEP 04 (2004) 031 [hep-th/0312220] [INSPIRE].

  18. Z. Chacko, R.K. Mishra and D. Stolarski, Dynamics of a Stabilized Radion and Duality, JHEP 09 (2013) 121 [arXiv:1304.1795] [INSPIRE].

  19. D. Bunk, J. Hubisz and B. Jain, A Perturbative RS I Cosmological Phase Transition, Eur. Phys. J. C 78 (2018) 78 [arXiv:1705.00001] [INSPIRE].

  20. E. Meǵıas, G. Nardini and M. Quirós, Cosmological Phase Transitions in Warped Space: Gravitational Waves and Collider Signatures, JHEP 09 (2018) 095 [arXiv:1806.04877] [INSPIRE].

  21. A. Duncan, The Conceptual Framework of Quantum Field Theory, Oxford University Press (2012).

  22. J.M. Lizana, M. Olechowski and S. Pokorski, in preparation.

  23. L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054 [hep-ph/0607158] [INSPIRE].

  24. J. Kaplan, P.C. Schuster and N. Toro, Avoiding an Empty Universe in RS I Models and Large-N Gauge Theories, hep-ph/0609012 [INSPIRE].

  25. G. Nardini, M. Quirós and A. Wulzer, A Confining Strong First-Order Electroweak Phase Transition, JHEP 09 (2007) 077 [arXiv:0706.3388] [INSPIRE].

  26. T. Konstandin, G. Nardini and M. Quirós, Gravitational Backreaction Effects on the Holographic Phase Transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [INSPIRE].

  27. B.M. Dillon, B.K. El-Menoufi, S.J. Huber and J.P. Manuel, Rapid holographic phase transition with brane-localized curvature, Phys. Rev. D 98 (2018) 086005 [arXiv:1708.02953] [INSPIRE].

  28. P. Cox and T. Gherghetta, A Soft-Wall Dilaton, JHEP 02 (2015) 006 [arXiv:1411.1732] [INSPIRE].

  29. J.S.R. Chisholm, Change of variables in quantum field theories, Nucl. Phys. 26 (1961) 469 [INSPIRE].

  30. S. Kamefuchi, L. O’Raifeartaigh and A. Salam, Change of variables and equivalence theorems in quantum field theories, Nucl. Phys. 28 (1961) 529 [INSPIRE].

  31. J.C. Criado and M. Pérez-Victoria, Field redefinitions in effective theories at higher orders, JHEP 03 (2019) 038 [arXiv:1811.09413] [INSPIRE].

  32. A. Pomarol, O. Pujol`as and L. Salas, Holographic conformal transition and light scalars, JHEP 10 (2019) 202 [arXiv:1905.02653] [INSPIRE].

  33. F. Abu-Ajamieh, J.S. Lee and J. Terning, The Light Radion Window, JHEP 10 (2018) 050 [arXiv:1711.02697] [INSPIRE].

  34. S.S. Gubser, Curvature singularities: The Good, the bad, and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].

  35. P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

  36. A. Carmona, E. Ponton and J. Santiago, Phenomenology of Non-Custodial Warped Models, JHEP 10 (2011) 137 [arXiv:1107.1500] [INSPIRE].

  37. J.A. Cabrer, G. von Gersdorff and M. Quirós, Flavor Phenomenology in General 5D Warped Spaces, JHEP 01 (2012) 033 [arXiv:1110.3324] [INSPIRE].

  38. E. Megias, M. Quirós and L. Salas, Lepton-flavor universality violation in RK and RD() from warped space, JHEP 07 (2017) 102 [arXiv:1703.06019] [INSPIRE].

  39. E. Meǵıas and M. Quirós, Gapped Continuum Kaluza-Klein spectrum, JHEP 08 (2019) 166 [arXiv:1905.07364] [INSPIRE].

  40. E. Megias and O. Pujol`as, Naturally light dilatons from nearly marginal deformations, JHEP 08 (2014) 081 [arXiv:1401.4998] [INSPIRE].

  41. T. Gherghetta, A Holographic View of Beyond the Standard Model Physics, in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pp. 165–232 (2011) [DOI] [arXiv:1008.2570] [INSPIRE].

  42. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [INSPIRE].

  43. F. Coradeschi, P. Lodone, D. Pappadopulo, R. Rattazzi and L. Vitale, A naturally light dilaton, JHEP 11 (2013) 057 [arXiv:1306.4601] [INSPIRE].

  44. R. Contino, A. Pomarol and R. Rattazzi, The naturally light dilaton, talk by R. Rattazzi at Planck 2010, CERN [slides].

  45. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

  46. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  47. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

  48. I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].

  49. L. Susskind and E. Witten, The Holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].

  50. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].

  51. I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

  52. J.M. Lizana, T.R. Morris and M. Pérez-Victoria, Holographic renormalisation group flows and renormalisation from a Wilsonian perspective, JHEP 03 (2016) 198 [arXiv:1511.04432] [INSPIRE].

  53. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

  54. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.M. Lizana.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1911.11124

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lizana, J., Olechowski, M. & Pokorski, S. A new way of calculating the effective potential for a light radion. J. High Energ. Phys. 2020, 92 (2020). https://doi.org/10.1007/JHEP09(2020)092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2020)092

Keywords

  • Field Theories in Higher Dimensions
  • Beyond Standard Model