Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Entanglement wedge reconstruction and the information paradox

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 01 September 2020
  • volume 2020, Article number: 2 (2020)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Entanglement wedge reconstruction and the information paradox
Download PDF
  • Geoffrey Penington  ORCID: orcid.org/0000-0002-8627-52371 
  • 2626 Accesses

  • 380 Citations

  • 58 Altmetric

  • 7 Mentions

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

When absorbing boundary conditions are used to evaporate a black hole in AdS/CFT, we show that there is a phase transition in the location of the quantum Ryu-Takayanagi surface, at precisely the Page time. The new RT surface lies slightly inside the event horizon, at an infalling time approximately the scrambling time β/2πlogSBH into the past. We can immediately derive the Page curve, using the Ryu-Takayanagi formula, and the Hayden-Preskill decoding criterion, using entanglement wedge reconstruction. Because part of the interior is now encoded in the early Hawking radiation, the decreasing entanglement entropy of the black hole is exactly consistent with the semiclassical bulk entanglement of the late-time Hawking modes, despite the absence of a firewall.

By studying the entanglement wedge of highly mixed states, we can understand the state dependence of the interior reconstructions. A crucial role is played by the existence of tiny, non-perturbative errors in entanglement wedge reconstruction. Directly after the Page time, interior operators can only be reconstructed from the Hawking radiation if the initial state of the black hole is known. As the black hole continues to evaporate, reconstructions become possible that simultaneously work for a large class of initial states. Using similar techniques, we generalise Hayden-Preskill to show how the amount of Hawking radiation required to reconstruct a large diary, thrown into the black hole, depends on both the energy and the entropy of the diary. Finally we argue that, before the evaporation begins, a single, state-independent interior reconstruction exists for any code space of microstates with entropy strictly less than the Bekenstein-Hawking entropy, and show that this is sufficient state dependence to avoid the AMPSS typical-state firewall paradox.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. W.G. Unruh and R.M. Wald, Information loss, Rept. Prog. Phys. 80 (2017) 092002 [arXiv:1703.02140] [INSPIRE].

  4. S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

    Article  ADS  Google Scholar 

  5. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  6. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. D.N. Page, Time dependence of Hawking radiation entropy, JCAP 09 (2013) 028 [arXiv:1301.4995] [INSPIRE].

  8. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

  9. D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, in Les rencontres physiciens-mathématiciens de Strasbourg — RCP25 19, (1973), pg. 36.

  12. Y. Nomura, J. Varela and S.J. Weinberg, Complementarity endures: no firewall for an infalling observer, JHEP 03 (2013) 059 [arXiv:1207.6626] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].

    Article  ADS  Google Scholar 

  14. L. Susskind, Singularities, firewalls and complementarity, arXiv:1208.3445 [INSPIRE].

  15. E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, JHEP 10 (2013) 107 [arXiv:1211.6913] [INSPIRE].

  16. L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [INSPIRE].

  17. D. Harlow and P. Hayden, Quantum computation vs. firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].

  18. J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

  19. B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

  20. M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

  21. A.C. Wall, Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

  22. D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].

  24. J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement wedge reconstruction via universal recovery channels, Phys. Rev. X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].

  25. A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

  29. N. Engelhardt and A.C. Wall, Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

    Article  ADS  Google Scholar 

  30. X. Dong and A. Lewkowycz, Entropy, extremality, Euclidean variations, and the equations of motion, JHEP 01 (2018) 081 [arXiv:1705.08453] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Almheiri, Holographic quantum error correction and the projected black hole interior, arXiv:1810.02055 [INSPIRE].

  32. K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].

  33. K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].

  34. D. Harlow, Aspects of the Papadodimas-Raju proposal for the black hole interior, JHEP 11 (2014) 055 [arXiv:1405.1995] [INSPIRE].

  35. K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].

  36. J. de Boer, R. Van Breukelen, S.F. Lokhande, K. Papadodimas and E. Verlinde, On the interior geometry of a typical black hole microstate, JHEP 05 (2019) 010 [arXiv:1804.10580] [INSPIRE].

  37. I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv:1707.02325 [INSPIRE].

  38. P. Hayden and G. Penington, Learning the alpha-bits of black holes, JHEP 12 (2019) 007 [arXiv:1807.06041] [INSPIRE].

  39. C. Bény, A. Kempf and D.W. Kribs, Generalization of quantum error correction via the Heisenberg picture, Phys. Rev. Lett. 98 (2007) 100502 [quant-ph/0608071].

  40. C. Bény, Conditions for the approximate correction of algebras, in Theory of quantum computation, communication and cryptography, Springer, Berlin, Heidelberg, Germany (2009), pg. 66.

  41. C. Bény and O. Oreshkov, General conditions for approximate quantum error correction and near-optimal recovery channels, Phys. Rev. Lett. 104 (2010) 120501 [arXiv:0907.5391].

  42. G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].

  43. A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].

  44. S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. J.V. Rocha, Evaporation of large black holes in AdS: coupling to the evaporon, JHEP 08 (2008) 075 [arXiv:0804.0055] [INSPIRE].

  46. M. Van Raamsdonk, Evaporating firewalls, JHEP 11 (2014) 038 [arXiv:1307.1796] [INSPIRE].

  47. J. Preskill, Quantum information and computation, Lecture notes for physics 229, California Institute of Technology, Pasadena, CA, U.S.A. (1998).

  48. C. Akers, N. Engelhardt, G. Penington and M. Usatyuk, Quantum maximin surfaces, arXiv:1912.02799 [INSPIRE].

  49. R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].

  50. G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].

  51. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica wormholes and the entropy of Hawking radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. S. Abdolrahimi, D.N. Page and C. Tzounis, Ingoing Eddington-Finkelstein metric of an evaporating black hole, Phys. Rev. D 100 (2019) 124038 [arXiv:1607.05280] [INSPIRE].

  53. A. Strominger, Les Houches lectures on black holes, in NATO advanced study institute: Les Houches summer school, session 62: fluctuating geometries in statistical mechanics and field theory, (1994) [hep-th/9501071] [INSPIRE].

  54. D. Harlow, Jerusalem lectures on black holes and quantum information, Rev. Mod. Phys. 88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].

  55. P.T. Landsberg and A.D. Vos, The Stefan-Boltzmann constant in N-dimensional space, J. Phys. A 22 (1989) 1073.

    Article  MathSciNet  ADS  Google Scholar 

  56. A.R. Brown, H. Gharibyan, G. Penington and L. Susskind, The python’s lunch: geometric obstructions to decoding Hawking radiation, arXiv:1912.00228 [INSPIRE].

  57. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

  58. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

  59. G. Penington, Entanglement wedge reconstruction and the information paradox, https://www.youtube.com/watch?v=1IXqdR5pAdE.

  60. D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].

  61. D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].

    Article  ADS  Google Scholar 

  62. P. Hayden and G. Penington, Approximate quantum error correction revisited: introducing the alpha-bit, Commun. Math. Phys. 374 (2020) 369 [arXiv:1706.09434] [INSPIRE].

  63. D. Kretschmann and R.F. Werner, Tema con variazioni: quantum channel capacity, New J. Phys. 6 (2004) 26 [quant-ph/0311037].

  64. B. Yoshida, Firewalls vs. scrambling, JHEP 10 (2019) 132 [arXiv:1902.09763] [INSPIRE].

  65. A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

    Article  ADS  Google Scholar 

  66. M. Tomamichel, R. Colbeck and R. Renner, A fully quantum asymptotic equipartition property, IEEE Trans. Inform. Theory 55 (2009) 5840.

    Article  MathSciNet  Google Scholar 

  67. P. Hayden and A. Winter, Weak decoupling duality and quantum identification, IEEE Trans. Inform. Theory 58 (2012) 4914.

    Article  MathSciNet  Google Scholar 

  68. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

  69. S. Cooper, M. Rozali, B. Swingle, M. Van Raamsdonk, C. Waddell and D. Wakeham, Black hole microstate cosmology, JHEP 07 (2019) 065 [arXiv:1810.10601] [INSPIRE].

  70. P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

  71. P. Hayden, M. Horodecki, A. Winter and J. Yard, A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn. 15 (2008) 7.

    Article  MathSciNet  Google Scholar 

  72. F. Dupuis, The decoupling approach to quantum information theory, arXiv:1004.1641.

  73. P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].

  74. S. Lloyd and J. Preskill, Unitarity of black hole evaporation in final-state projection models, JHEP 08 (2014) 126 [arXiv:1308.4209] [INSPIRE].

    Article  ADS  Google Scholar 

  75. R. Bousso and D. Stanford, Measurements without probabilities in the final state proposal, Phys. Rev. D 89 (2014) 044038 [arXiv:1310.7457] [INSPIRE].

  76. D. Marolf, The black hole information problem: past, present, and future, Rept. Prog. Phys. 80 (2017) 092001 [arXiv:1703.02143] [INSPIRE].

  77. N. Bao, G. Penington, J. Sorce and A.C. Wall, Beyond toy models: distilling tensor networks in full AdS/CFT, JHEP 11 (2019) 069 [arXiv:1812.01171] [INSPIRE].

  78. N. Bao, G. Penington, J. Sorce and A.C. Wall, Holographic tensor networks in full AdS/CFT, arXiv:1902.10157 [INSPIRE].

  79. T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151 [arXiv:1704.05464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. C.-F. Chen, G. Penington and G. Salton, Entanglement wedge reconstruction using the Petz map, JHEP 01 (2020) 168 [arXiv:1902.02844] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].

  82. A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

  83. L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].

    Article  Google Scholar 

  84. P. Kraus, J. Liu and D. Marolf, Cutoff AdS3 versus the \( T\overline{T} \) deformation, JHEP 07 (2018) 027 [arXiv:1801.02714] [INSPIRE].

    Article  Google Scholar 

  85. W. Donnelly and V. Shyam, Entanglement entropy and \( T\overline{T} \) deformation, Phys. Rev. Lett. 121 (2018) 131602 [arXiv:1806.07444] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  86. V. Gorbenko, E. Silverstein and G. Torroba, dS/dS and \( T\overline{T} \), JHEP 03 (2019) 085 [arXiv:1811.07965] [INSPIRE].

    Article  Google Scholar 

  87. A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].

  88. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  89. A. Kitaev, A simple model of quantum holography (part 1), in KITP strings seminar, University of California, Santa Barbara, CA, U.S.A., 7 April 2015.

  90. A. Kitaev, A simple model of quantum holography (part 2), in KITP strings seminar , University of California, Santa Barbara, CA, U.S.A., 27 May 2015.

  91. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

  92. J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  93. J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].

  94. P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].

  95. A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

  96. J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

  97. K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

    Article  ADS  Google Scholar 

  98. J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  99. M. Ohya and D. Petz, Quantum entropy and its use, Springer, Berlin, Heidelberg, Germany (1993).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Stanford Institute for Theoretical Physics, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA

    Geoffrey Penington

Authors
  1. Geoffrey Penington
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Geoffrey Penington.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1905.08255

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penington, G. Entanglement wedge reconstruction and the information paradox. J. High Energ. Phys. 2020, 2 (2020). https://doi.org/10.1007/JHEP09(2020)002

Download citation

  • Received: 27 May 2020

  • Accepted: 13 July 2020

  • Published: 01 September 2020

  • DOI: https://doi.org/10.1007/JHEP09(2020)002

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes
  • Black Holes in String Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature