Abstract
When absorbing boundary conditions are used to evaporate a black hole in AdS/CFT, we show that there is a phase transition in the location of the quantum Ryu-Takayanagi surface, at precisely the Page time. The new RT surface lies slightly inside the event horizon, at an infalling time approximately the scrambling time β/2πlogSBH into the past. We can immediately derive the Page curve, using the Ryu-Takayanagi formula, and the Hayden-Preskill decoding criterion, using entanglement wedge reconstruction. Because part of the interior is now encoded in the early Hawking radiation, the decreasing entanglement entropy of the black hole is exactly consistent with the semiclassical bulk entanglement of the late-time Hawking modes, despite the absence of a firewall.
By studying the entanglement wedge of highly mixed states, we can understand the state dependence of the interior reconstructions. A crucial role is played by the existence of tiny, non-perturbative errors in entanglement wedge reconstruction. Directly after the Page time, interior operators can only be reconstructed from the Hawking radiation if the initial state of the black hole is known. As the black hole continues to evaporate, reconstructions become possible that simultaneously work for a large class of initial states. Using similar techniques, we generalise Hayden-Preskill to show how the amount of Hawking radiation required to reconstruct a large diary, thrown into the black hole, depends on both the energy and the entropy of the diary. Finally we argue that, before the evaporation begins, a single, state-independent interior reconstruction exists for any code space of microstates with entropy strictly less than the Bekenstein-Hawking entropy, and show that this is sufficient state dependence to avoid the AMPSS typical-state firewall paradox.
Article PDF
References
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
W.G. Unruh and R.M. Wald, Information loss, Rept. Prog. Phys. 80 (2017) 092002 [arXiv:1703.02140] [INSPIRE].
S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].
S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].
D.N. Page, Time dependence of Hawking radiation entropy, JCAP 09 (2013) 028 [arXiv:1301.4995] [INSPIRE].
P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, in Les rencontres physiciens-mathématiciens de Strasbourg — RCP25 19, (1973), pg. 36.
Y. Nomura, J. Varela and S.J. Weinberg, Complementarity endures: no firewall for an infalling observer, JHEP 03 (2013) 059 [arXiv:1207.6626] [INSPIRE].
R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].
L. Susskind, Singularities, firewalls and complementarity, arXiv:1208.3445 [INSPIRE].
E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, JHEP 10 (2013) 107 [arXiv:1211.6913] [INSPIRE].
L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [INSPIRE].
D. Harlow and P. Hayden, Quantum computation vs. firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].
M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].
A.C. Wall, Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].
D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].
X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement wedge reconstruction via universal recovery channels, Phys. Rev. X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].
A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].
M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].
V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
N. Engelhardt and A.C. Wall, Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].
X. Dong and A. Lewkowycz, Entropy, extremality, Euclidean variations, and the equations of motion, JHEP 01 (2018) 081 [arXiv:1705.08453] [INSPIRE].
A. Almheiri, Holographic quantum error correction and the projected black hole interior, arXiv:1810.02055 [INSPIRE].
K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].
K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
D. Harlow, Aspects of the Papadodimas-Raju proposal for the black hole interior, JHEP 11 (2014) 055 [arXiv:1405.1995] [INSPIRE].
K. Papadodimas and S. Raju, Remarks on the necessity and implications of state-dependence in the black hole interior, Phys. Rev. D 93 (2016) 084049 [arXiv:1503.08825] [INSPIRE].
J. de Boer, R. Van Breukelen, S.F. Lokhande, K. Papadodimas and E. Verlinde, On the interior geometry of a typical black hole microstate, JHEP 05 (2019) 010 [arXiv:1804.10580] [INSPIRE].
I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv:1707.02325 [INSPIRE].
P. Hayden and G. Penington, Learning the alpha-bits of black holes, JHEP 12 (2019) 007 [arXiv:1807.06041] [INSPIRE].
C. Bény, A. Kempf and D.W. Kribs, Generalization of quantum error correction via the Heisenberg picture, Phys. Rev. Lett. 98 (2007) 100502 [quant-ph/0608071].
C. Bény, Conditions for the approximate correction of algebras, in Theory of quantum computation, communication and cryptography, Springer, Berlin, Heidelberg, Germany (2009), pg. 66.
C. Bény and O. Oreshkov, General conditions for approximate quantum error correction and near-optimal recovery channels, Phys. Rev. Lett. 104 (2010) 120501 [arXiv:0907.5391].
G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].
A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].
S.W. Hawking and D.N. Page, Thermodynamics of black holes in anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].
J.V. Rocha, Evaporation of large black holes in AdS: coupling to the evaporon, JHEP 08 (2008) 075 [arXiv:0804.0055] [INSPIRE].
M. Van Raamsdonk, Evaporating firewalls, JHEP 11 (2014) 038 [arXiv:1307.1796] [INSPIRE].
J. Preskill, Quantum information and computation, Lecture notes for physics 229, California Institute of Technology, Pasadena, CA, U.S.A. (1998).
C. Akers, N. Engelhardt, G. Penington and M. Usatyuk, Quantum maximin surfaces, arXiv:1912.02799 [INSPIRE].
R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].
G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica wormholes and the entropy of Hawking radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].
S. Abdolrahimi, D.N. Page and C. Tzounis, Ingoing Eddington-Finkelstein metric of an evaporating black hole, Phys. Rev. D 100 (2019) 124038 [arXiv:1607.05280] [INSPIRE].
A. Strominger, Les Houches lectures on black holes, in NATO advanced study institute: Les Houches summer school, session 62: fluctuating geometries in statistical mechanics and field theory, (1994) [hep-th/9501071] [INSPIRE].
D. Harlow, Jerusalem lectures on black holes and quantum information, Rev. Mod. Phys. 88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].
P.T. Landsberg and A.D. Vos, The Stefan-Boltzmann constant in N-dimensional space, J. Phys. A 22 (1989) 1073.
A.R. Brown, H. Gharibyan, G. Penington and L. Susskind, The python’s lunch: geometric obstructions to decoding Hawking radiation, arXiv:1912.00228 [INSPIRE].
P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].
G. Penington, Entanglement wedge reconstruction and the information paradox, https://www.youtube.com/watch?v=1IXqdR5pAdE.
D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].
P. Hayden and G. Penington, Approximate quantum error correction revisited: introducing the alpha-bit, Commun. Math. Phys. 374 (2020) 369 [arXiv:1706.09434] [INSPIRE].
D. Kretschmann and R.F. Werner, Tema con variazioni: quantum channel capacity, New J. Phys. 6 (2004) 26 [quant-ph/0311037].
B. Yoshida, Firewalls vs. scrambling, JHEP 10 (2019) 132 [arXiv:1902.09763] [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].
M. Tomamichel, R. Colbeck and R. Renner, A fully quantum asymptotic equipartition property, IEEE Trans. Inform. Theory 55 (2009) 5840.
P. Hayden and A. Winter, Weak decoupling duality and quantum identification, IEEE Trans. Inform. Theory 58 (2012) 4914.
J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].
S. Cooper, M. Rozali, B. Swingle, M. Van Raamsdonk, C. Waddell and D. Wakeham, Black hole microstate cosmology, JHEP 07 (2019) 065 [arXiv:1810.10601] [INSPIRE].
P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].
P. Hayden, M. Horodecki, A. Winter and J. Yard, A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn. 15 (2008) 7.
F. Dupuis, The decoupling approach to quantum information theory, arXiv:1004.1641.
P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
S. Lloyd and J. Preskill, Unitarity of black hole evaporation in final-state projection models, JHEP 08 (2014) 126 [arXiv:1308.4209] [INSPIRE].
R. Bousso and D. Stanford, Measurements without probabilities in the final state proposal, Phys. Rev. D 89 (2014) 044038 [arXiv:1310.7457] [INSPIRE].
D. Marolf, The black hole information problem: past, present, and future, Rept. Prog. Phys. 80 (2017) 092001 [arXiv:1703.02143] [INSPIRE].
N. Bao, G. Penington, J. Sorce and A.C. Wall, Beyond toy models: distilling tensor networks in full AdS/CFT, JHEP 11 (2019) 069 [arXiv:1812.01171] [INSPIRE].
N. Bao, G. Penington, J. Sorce and A.C. Wall, Holographic tensor networks in full AdS/CFT, arXiv:1902.10157 [INSPIRE].
T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151 [arXiv:1704.05464] [INSPIRE].
C.-F. Chen, G. Penington and G. Salton, Entanglement wedge reconstruction using the Petz map, JHEP 01 (2020) 168 [arXiv:1902.02844] [INSPIRE].
A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].
A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].
P. Kraus, J. Liu and D. Marolf, Cutoff AdS3 versus the \( T\overline{T} \) deformation, JHEP 07 (2018) 027 [arXiv:1801.02714] [INSPIRE].
W. Donnelly and V. Shyam, Entanglement entropy and \( T\overline{T} \) deformation, Phys. Rev. Lett. 121 (2018) 131602 [arXiv:1806.07444] [INSPIRE].
V. Gorbenko, E. Silverstein and G. Torroba, dS/dS and \( T\overline{T} \), JHEP 03 (2019) 085 [arXiv:1811.07965] [INSPIRE].
A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].
S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
A. Kitaev, A simple model of quantum holography (part 1), in KITP strings seminar, University of California, Santa Barbara, CA, U.S.A., 7 April 2015.
A. Kitaev, A simple model of quantum holography (part 2), in KITP strings seminar , University of California, Santa Barbara, CA, U.S.A., 27 May 2015.
J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].
J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
M. Ohya and D. Petz, Quantum entropy and its use, Springer, Berlin, Heidelberg, Germany (1993).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 1905.08255
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Penington, G. Entanglement wedge reconstruction and the information paradox. J. High Energ. Phys. 2020, 2 (2020). https://doi.org/10.1007/JHEP09(2020)002
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2020)002