Skip to main content

Gravitino vs. neutralino LSP at the LHC

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A preprint version of the article is available at arXiv.

Abstract

Using the latest LHC data, we analyse and compare the lower limits on the masses of gluinos and the lightest stop in two natural supersymmetric motivated scenarios: one with a neutralino being the lightest supersymmetric particle (LSP) and the other one with gravitino as the LSP and neutralino as the next-to-lightest supersymmetric particle. In the second case our analysis applies to neutralinos promptly decaying to very light gravitinos, which are of cosmological interest, and are generic for low, of order \( \mathcal{O} \) (100) TeV, messenger scale in gauge mediation models. We find that the lower bounds on the gluino and the lightest stop masses are stronger for the gravitino LSP scenarios due to the extra handle from the decay products of neutralinos. Generally, in contrast to the neutralino LSP case the limits now extend to a region of compressed spectrum. In bino scenarios the highest excluded stop mass increases from 1000 GeV to almost 1400 GeV. Additionally, in the higgsino-like NLSP scenario the higgsinos below 650 GeV are universally excluded and the stop mass limit is \( {m}_{\tilde{t}} \)> 1150 GeV, whereas there is no limit on stops in the higgsino LSP model for \( {m}_{\tilde{h}} \) = 650 GeV. Nevertheless, we find that the low messenger scale still ameliorates the fine tuning in the electroweak potential.

References

  1. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, JHEP09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    ADS  Article  Google Scholar 

  2. M.R. Buckley, D. Feld, S. Macaluso, A. Monteux and D. Shih, Cornering Natural SUSY at LHC Run II and Beyond, JHEP08 (2017) 115 [arXiv:1610.08059] [INSPIRE].

    ADS  Article  Google Scholar 

  3. H. Baer et al., What hadron collider is required to discover or falsify natural supersymmetry?, Phys. Lett.B 774 (2017) 451 [arXiv:1702.06588] [INSPIRE].

  4. H. Baer, V. Barger, J.S. Gainer, D. Sengupta, H. Serce and X. Tata, LHC luminosity and energy upgrades confront natural supersymmetry models, Phys. Rev.D 98 (2018) 075010 [arXiv:1808.04844] [INSPIRE].

  5. J.S. Kim, D. Schmeier and J. Tattersall, Role of theNin the natural NMSSM for the LHC, Phys. Rev.D 93 (2016) 055018 [arXiv:1510.04871] [INSPIRE].

  6. M. Drees and J.S. Kim, Minimal natural supersymmetry after the LHC8, Phys. Rev.D 93 (2016) 095005 [arXiv:1511.04461] [INSPIRE].

  7. J.S. Kim, K. Rolbiecki, R. Ruiz, J. Tattersall and T. Weber, Prospects for natural SUSY, Phys. Rev.D 94 (2016) 095013 [arXiv:1606.06738] [INSPIRE].

  8. J.A. Evans, Y. Kats, D. Shih and M.J. Strassler, Toward Full LHC Coverage of Natural Supersymmetry, JHEP07 (2014) 101 [arXiv:1310.5758] [INSPIRE].

    ADS  Article  Google Scholar 

  9. J.A. Casas, J.M. Moreno, S. Robles, K. Rolbiecki and B. Zaldívar, What is a Natural SUSY scenario?, JHEP06 (2015) 070 [arXiv:1407.6966] [INSPIRE].

    ADS  Article  Google Scholar 

  10. CMS collaboration, Inclusive search for supersymmetry in pp collisions at \( \sqrt{s} \) = 13 TeV using razor variables and boosted object identification in zero and one lepton final states, JHEP03 (2019) 031 [arXiv:1812.06302] [INSPIRE].

  11. CMS collaboration, Search for natural and split supersymmetry in proton-proton collisions at \( \sqrt{s} \) = 13 TeV in final states with jets and missing transverse momentum, JHEP05(2018) 025 [arXiv:1802.02110] [INSPIRE].

  12. ATLAS collaboration, Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP12 (2017) 085 [arXiv:1709.04183] [INSPIRE].

  13. ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1of \( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, Phys. Rev.D 97 (2018) 112001 [arXiv:1712.02332] [INSPIRE].

  14. ATLAS collaboration, Search for supersymmetry in final states with missing transverse momentum and multiple b-jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2018-041 (2018) [INSPIRE].

  15. CMS collaboration, Searches for new phenomena in events with jets and high values of the M T2variable, including signatures with disappearing tracks, in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-19-005 (2019) [INSPIRE].

  16. S. Knapen and D. Redigolo, Gauge mediation at the LHC: status and prospects, JHEP01 (2017) 135 [arXiv:1606.07501] [INSPIRE].

    ADS  Article  Google Scholar 

  17. J.L. Feng, M. Kamionkowski and S.K. Lee, Light Gravitinos at Colliders and Implications for Cosmology, Phys. Rev.D 82 (2010) 015012 [arXiv:1004.4213] [INSPIRE].

  18. J.S. Kim, M.E. Krauss and V. Martin-Lozano, Probing the Electroweakino Sector of General Gauge Mediation at the LHC, Phys. Lett.B 783 (2018) 150 [arXiv:1705.06497] [INSPIRE].

  19. P. Meade, M. Reece and D. Shih, Prompt Decays of General Neutralino NLSPs at the Tevatron, JHEP05 (2010) 105 [arXiv:0911.4130] [INSPIRE].

  20. J.T. Ruderman and D. Shih, General Neutralino NLSPs at the Early LHC, JHEP08 (2012) 159 [arXiv:1103.6083] [INSPIRE].

  21. N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, JHEP03 (2014) 140 [arXiv:1312.1341] [INSPIRE].

  22. A. Katz, A. Mariotti, S. Pokorski, D. Redigolo and R. Ziegler, SUSY Meets Her Twin, JHEP01 (2017) 142 [arXiv:1611.08615] [INSPIRE].

    ADS  Article  Google Scholar 

  23. M. Badziak and K. Harigaya, Asymptotically Free Natural Supersymmetric Twin Higgs Model, Phys. Rev. Lett.120 (2018) 211803 [arXiv:1711.11040] [INSPIRE].

    ADS  Article  Google Scholar 

  24. T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett.B 303 (1993) 289 [INSPIRE].

  25. M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys.B 606 (2001) 518 [Erratum ibid.B 790 (2008) 336] [hep-ph/0012052] [INSPIRE].

  26. J. Pradler and F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis, Phys. Rev.D 75 (2007) 023509 [hep-ph/0608344] [INSPIRE].

  27. L. Covi, Gravitino Dark Matter confronts LHC, J. Phys. Conf. Ser.485 (2014) 012002 [INSPIRE].

  28. S. Raby, Supersymmetric Grand Unified Theories, Lect. Notes Phys.939 (2017) 1 [INSPIRE].

  29. V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev.D 75 (2007) 075011 [hep-ph/0701104] [INSPIRE].

  30. K. Osato, T. Sekiguchi, M. Shirasaki, A. Kamada and N. Yoshida, Cosmological Constraint on the Light Gravitino Mass from CMB Lensing and Cosmic Shear, JCAP06 (2016) 004 [arXiv:1601.07386] [INSPIRE].

    ADS  Article  Google Scholar 

  31. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-α forest, Phys. Rev.D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].

  32. F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett.B 485 (2000) 388 [hep-ph/0005214] [INSPIRE].

  33. G. Bertone, W. Buchmüller, L. Covi and A. Ibarra, Gamma-Rays from Decaying Dark Matter, JCAP11 (2007) 003 [arXiv:0709.2299] [INSPIRE].

    ADS  Article  Google Scholar 

  34. A. Ibarra and D. Tran, Gamma Ray Spectrum from Gravitino Dark Matter Decay, Phys. Rev. Lett.100 (2008) 061301 [arXiv:0709.4593] [INSPIRE].

  35. L. Covi, M. Grefe, A. Ibarra and D. Tran, Unstable Gravitino Dark Matter and Neutrino Flux, JCAP01 (2009) 029 [arXiv:0809.5030] [INSPIRE].

  36. K.Y. Choi, D. Restrepo, C.E. Yaguna and O. Zapata, Indirect detection of gravitino dark matter including its three-body decays, JCAP10 (2010) 033 [arXiv:1007.1728] [INSPIRE].

    ADS  Article  Google Scholar 

  37. H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept.117 (1985) 75 [INSPIRE].

    ADS  Article  Google Scholar 

  38. S.Y. Choi, J. Kalinowski, G.A. Moortgat-Pick and P.M. Zerwas, Analysis of the neutralino system in supersymmetric theories, Eur. Phys. J.C 22 (2001) 563 [Erratum ibid.C 23 (2002) 769] [hep-ph/0108117] [INSPIRE].

  39. ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP06 (2018) 022 [arXiv:1712.02118] [INSPIRE].

  40. CMS collaboration, Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP08 (2018) 016 [arXiv:1804.07321] [INSPIRE].

  41. CMS collaboration, Search for Long-Lived Particles Decaying to Photons and Missing Energy in Proton-Proton Collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett.B 722 (2013) 273 [arXiv:1212.1838] [INSPIRE].

  42. ATLAS collaboration, Search for nonpointing photons in the diphoton and \( {E}_T^{\mathrm{miss}} \)final state in \( \sqrt{s} \) = 7 TeV proton-proton collisions using the ATLAS detector, Phys. Rev.D 88 (2013) 012001 [arXiv:1304.6310] [INSPIRE].

  43. CMS collaboration, Search for long-lived neutral particles in the final state of delayed photons and missing energy in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-035 (2015) [INSPIRE].

  44. ATLAS collaboration, Search for nonpointing and delayed photons in the diphoton and missing transverse momentum final state in 8 TeV pp collisions at the LHC using the ATLAS detector, Phys. Rev.D 90 (2014) 112005 [arXiv:1409.5542] [INSPIRE].

  45. G. Hiller, J.S. Kim and H. Sedello, Collider Signatures of Minimal Flavor Mixing from Stop Decay Length Measurements, Phys. Rev.D 80 (2009) 115016 [arXiv:0910.2124] [INSPIRE].

  46. ATLAS collaboration, Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev.D 97 (2018) 052012 [arXiv:1710.04901] [INSPIRE].

  47. S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin and S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders, Phys. Rev.D 54 (1996) 5395 [hep-ph/9605398] [INSPIRE].

  48. S. Dimopoulos, S.D. Thomas and J.D. Wells, Sparticle spectroscopy and electroweak symmetry breaking with gauge mediated supersymmetry breaking, Nucl. Phys.B 488 (1997) 39 [hep-ph/9609434] [INSPIRE].

  49. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun.168 (2005) 46 [hep-ph/0311167] [INSPIRE].

  50. M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun.187 (2015) 227 [arXiv:1312.2591] [INSPIRE].

    ADS  Article  Google Scholar 

  51. J.S. Kim, D. Schmeier, J. Tattersall and K. Rolbiecki, A framework to create customised LHC analyses within CheckMATE, Comput. Phys. Commun.196 (2015) 535 [arXiv:1503.01123] [INSPIRE].

    ADS  Article  Google Scholar 

  52. D. Dercks, N. Desai, J.S. Kim, K. Rolbiecki, J. Tattersall and T. Weber, CheckMATE 2: From the model to the limit, Comput. Phys. Commun.221 (2017) 383 [arXiv:1611.09856] [INSPIRE].

    ADS  Article  Google Scholar 

  53. T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  54. W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys.B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

  55. A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett.102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].

  56. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Soft-gluon resummation for squark and gluino hadroproduction, JHEP12 (2009) 041 [arXiv:0909.4418] [INSPIRE].

  57. B. Fuks, M. Klasen, D.R. Lamprea and M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with Resummino, Eur. Phys. J.C 73 (2013) 2480 [arXiv:1304.0790] [INSPIRE].

  58. J. Debove, B. Fuks and M. Klasen, Threshold resummation for gaugino pair production at hadron colliders, Nucl. Phys.B 842 (2011) 51 [arXiv:1005.2909] [INSPIRE].

  59. DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

    ADS  Google Scholar 

  60. CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2018) 160 [arXiv:1801.03957] [INSPIRE].

  61. ATLAS collaboration, Search for dark matter produced in association with bottom or top quarks in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Eur. Phys. J.C 78 (2018) 18 [arXiv:1710.11412] [INSPIRE].

  62. ATLAS collaboration, Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV pp collisions with the ATLAS detector, Phys. Rev.D 97 (2018) 092006 [arXiv:1802.03158] [INSPIRE].

  63. ATLAS collaboration, Search for direct top squark pair production in events with a Higgs or Z boson and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, ATLAS-CONF-2017-019 (2017) [INSPIRE].

  64. CMS collaboration, Search for GMSB supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-16-046 (2017) [INSPIRE].

  65. H.K. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A.M. Weber and G. Weiglein, Mass Bounds on a Very Light Neutralino, Eur. Phys. J.C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Rolbiecki.

Additional information

ArXiv ePrint: 1905.05648

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J.S., Pokorski, S., Rolbiecki, K. et al. Gravitino vs. neutralino LSP at the LHC. J. High Energ. Phys. 2019, 82 (2019). https://doi.org/10.1007/JHEP09(2019)082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2019)082

Keywords

  • Supersymmetry Phenomenology