Abstract
We study the entanglement of purification (EoP) of subsystem A and B in conformal field theories (CFTs) stressing on its relation to unitary operations of disentanglement, if the auxiliary subsystem \( \tilde{A} \) adjoins A and \( \tilde{A}\tilde{B} \) is the complement of AB. We estimate the amount of the disentanglement by using the inequality of Von Neumann entropy as well as the surface/state correspondence. Denote the state that produces the EoP by |ψ〉M. We calculate the variance of entanglement entropy of A\( \tilde{A} \) in the state \( \left|\psi \left(\delta \right)\right\rangle := {e}^{i\delta H}\tilde{A}\tilde{B}{\left|\psi \right\rangle}_M \). We find a constraint on the state \( {\left|\psi \right\rangle}_M\left[{K}_{A\tilde{A},M},{O}_{\tilde{A}}\right]=0 \), where \( {K}_{A\tilde{A},M} \) is the modular Hamiltonian of A\( \tilde{A} \) in the state |ψ〉M, \( {O}_{\tilde{A}}\in \mathcal{R}\left(\tilde{\mathrm{A}}\right) \) is an arbitrary operator. We also study three different states that can be seen as disentangled states. Two of them can produce the holographic EoP result in some limit. But we show that none of they could be a candidate of the state |ψ〉M, since the distance between these three states and |ψ〉M is very large.
References
M. Srednicki, Entropy and area, Phys. Rev. Lett.71 (1993) 666 [hep-th/9303048] [INSPIRE].
J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].
S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].
M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography, PTEP2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].
B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of purification, J. Math. Phys.43 (2002) 4286 [quant-ph/0202044].
P. Caputa, M. Miyaji, T. Takayanagi and K. Umemoto, Holographic Entanglement of Purification from Conformal Field Theories, Phys. Rev. Lett.122 (2019) 111601 [arXiv:1812.05268] [INSPIRE].
J. Hauschild et al., Finding purifications with minimal entanglement, Phys. Rev.B 98 (2018) 235163 [arXiv:1711.01288].
A. Bhattacharyya, T. Takayanagi and K. Umemoto, Entanglement of Purification in Free Scalar Field Theories, JHEP04 (2018) 132 [arXiv:1802.09545] [INSPIRE].
A. Bhattacharyya, A. Jahn, T. Takayanagi and K. Umemoto, Entanglement of Purification in Many Body Systems and Symmetry Breaking, Phys. Rev. Lett.122 (2019) 201601 [arXiv:1902.02369] [INSPIRE].
T. Takayanagi and K. Umemoto, Entanglement of purification through holographic duality, Nature Phys.14 (2018) 573 [arXiv:1708.09393] [INSPIRE].
P. Nguyen, T. Devakul, M.G. Halbasch, M.P. Zaletel and B. Swingle, Entanglement of purification: from spin chains to holography, JHEP01 (2018) 098 [arXiv:1709.07424] [INSPIRE].
B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].
A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].
M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP12 (2014) 162 [arXiv:1408.6300] [INSPIRE].
X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett.117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
S. Bagchi and A.K. Pati, Monogamy, polygamy, and other properties of entanglement of purification, Phys. Rev.A 91 (2015) 042323 [arXiv:1502.01272].
W.-Z. Guo, Entanglement of Purification and Projective Measurement in CFT, arXiv:1901.00330 [INSPIRE].
N. Bao and I.F. Halpern, Holographic Inequalities and Entanglement of Purification, JHEP03 (2018) 006 [arXiv:1710.07643] [INSPIRE].
H. Hirai, K. Tamaoka and T. Yokoya, Towards Entanglement of Purification for Conformal Field Theories, PTEP2018 (2018) 063B03 [arXiv:1803.10539] [INSPIRE].
R. Esp´ındola, A. Guijosa and J.F. Pedraza, Entanglement Wedge Reconstruction and Entanglement of Purification, Eur. Phys. J.C 78 (2018) 646 [arXiv:1804.05855] [INSPIRE].
K. Umemoto and Y. Zhou, Entanglement of Purification for Multipartite States and its Holographic Dual, JHEP10 (2018) 152 [arXiv:1805.02625] [INSPIRE].
Y. Chen, X. Dong, A. Lewkowycz and X.-L. Qi, Modular Flow as a Disentangler, JHEP12 (2018) 083 [arXiv:1806.09622] [INSPIRE].
R.-Q. Yang, C.-Y. Zhang and W.-M. Li, Holographic entanglement of purification for thermofield double states and thermal quench, JHEP01 (2019) 114 [arXiv:1810.00420] [INSPIRE].
C.A. Agón, J. De Boer and J.F. Pedraza, Geometric Aspects of Holographic Bit Threads, JHEP05 (2019) 075 [arXiv:1811.08879] [INSPIRE].
N. Bao, G. Penington, J. Sorce and A.C. Wall, Beyond Toy Models: Distilling Tensor Networks in Full AdS/CFT, arXiv:1812.01171 [INSPIRE].
N. Jokela and A. Pönni, Notes on entanglement wedge cross sections, JHEP07 (2019) 087 [arXiv:1904.09582] [INSPIRE].
N. Bao, A. Chatwin-Davies, J. Pollack and G.N. Remmen, Towards a Bit Threads Derivation of Holographic Entanglement of Purification, JHEP07 (2019) 152 [arXiv:1905.04317] [INSPIRE].
C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [INSPIRE].
P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE].
H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett.B 600 (2004) 142 [hep-th/0405111] [INSPIRE].
J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review, Rev. Mod. Phys.82 (2010) 277 [arXiv:0808.3773] [INSPIRE].
H. Wilming and J. Eisert, Single-shot holographic compression from the area law, Phys. Rev. Lett.122 (2019) 190501 [arXiv:1809.10156] [INSPIRE].
T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP07 (2017) 151 [arXiv:1704.05464] [INSPIRE].
B. Czech, L. Lamprou, S. Mccandlish and J. Sully, Modular Berry Connection for Entangled Subregions in AdS/CFT, Phys. Rev. Lett.120 (2018) 091601 [arXiv:1712.07123] [INSPIRE].
P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech.0710 (2007) P10004 [arXiv:0708.3750] [INSPIRE].
T. Shimaji, T. Takayanagi and Z. Wei, Holographic Quantum Circuits from Splitting/Joining Local Quenches, JHEP03 (2019) 165 [arXiv:1812.01176] [INSPIRE].
M.A. Rajabpour, Post measurement bipartite entanglement entropy in conformal field theories, Phys. Rev.B 92 (2015) 075108 [arXiv:1501.07831] [INSPIRE].
M.A. Rajabpour, Entanglement entropy after a partial projective measurement in 1 + 1 dimensional conformal field theories: exact results, J. Stat. Mech.1606 (2016) 063109 [arXiv:1512.03940] [INSPIRE].
T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, EPR Pairs, Local Projections and Quantum Teleportation in Holography, JHEP08 (2016) 077 [arXiv:1604.01772] [INSPIRE].
J. Kudler-Flam and S. Ryu, Entanglement negativity and minimal entanglement wedge cross sections in holographic theories, Phys. Rev.D 99 (2019) 106014 [arXiv:1808.00446] [INSPIRE].
K. Tamaoka, Entanglement Wedge Cross Section from the Dual Density Matrix, Phys. Rev. Lett.122 (2019) 141601 [arXiv:1809.09109] [INSPIRE].
S. Dutta and T. Faulkner, A canonical purification for the entanglement wedge cross-section, arXiv:1905.00577 [INSPIRE].
W.-Z. Guo, F.-L. Lin and J. Zhang, Nongeometric states in a holographic conformal field theory, Phys. Rev.D 99 (2019) 106001 [arXiv:1806.07595] [INSPIRE].
N. Lashkari, H. Liu and S. Rajagopal, Perturbation Theory for the Logarithm of a Positive Operator, arXiv:1811.05619 [INSPIRE].
T. Faulkner, Bulk Emergence and the RG Flow of Entanglement Entropy, JHEP05 (2015) 033 [arXiv:1412.5648] [INSPIRE].
T. Faulkner, F.M. Haehl, E. Hijano, O. Parrikar, C. Rabideau and M. Van Raamsdonk, Nonlinear Gravity from Entanglement in Conformal Field Theories, JHEP08 (2017) 057 [arXiv:1705.03026] [INSPIRE].
G. Sárosi and T. Ugajin, Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields, JHEP01 (2018) 012 [arXiv:1705.01486] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1904.12124
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Guo, Wz. Entanglement of purification and disentanglement in CFTs. J. High Energ. Phys. 2019, 80 (2019). https://doi.org/10.1007/JHEP09(2019)080
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2019)080
Keywords
- Conformal Field Theory
- AdS-CFT Correspondence