Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Entanglement of purification and disentanglement in CFTs

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 11 September 2019
  • volume 2019, Article number: 80 (2019)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Entanglement of purification and disentanglement in CFTs
Download PDF
  • Wu-zhong Guo1 
  • 309 Accesses

  • 12 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We study the entanglement of purification (EoP) of subsystem A and B in conformal field theories (CFTs) stressing on its relation to unitary operations of disentanglement, if the auxiliary subsystem \( \tilde{A} \) adjoins A and \( \tilde{A}\tilde{B} \) is the complement of AB. We estimate the amount of the disentanglement by using the inequality of Von Neumann entropy as well as the surface/state correspondence. Denote the state that produces the EoP by |ψ〉M. We calculate the variance of entanglement entropy of A\( \tilde{A} \) in the state \( \left|\psi \left(\delta \right)\right\rangle := {e}^{i\delta H}\tilde{A}\tilde{B}{\left|\psi \right\rangle}_M \). We find a constraint on the state \( {\left|\psi \right\rangle}_M\left[{K}_{A\tilde{A},M},{O}_{\tilde{A}}\right]=0 \), where \( {K}_{A\tilde{A},M} \) is the modular Hamiltonian of A\( \tilde{A} \) in the state |ψ〉M, \( {O}_{\tilde{A}}\in \mathcal{R}\left(\tilde{\mathrm{A}}\right) \) is an arbitrary operator. We also study three different states that can be seen as disentangled states. Two of them can produce the holographic EoP result in some limit. But we show that none of they could be a candidate of the state |ψ〉M, since the distance between these three states and |ψ〉M is very large.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. M. Srednicki, Entropy and area, Phys. Rev. Lett.71 (1993) 666 [hep-th/9303048] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  3. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography, PTEP2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  6. B.M. Terhal, M. Horodecki, D.W. Leung and D.P. DiVincenzo, The entanglement of purification, J. Math. Phys.43 (2002) 4286 [quant-ph/0202044].

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Caputa, M. Miyaji, T. Takayanagi and K. Umemoto, Holographic Entanglement of Purification from Conformal Field Theories, Phys. Rev. Lett.122 (2019) 111601 [arXiv:1812.05268] [INSPIRE].

  8. J. Hauschild et al., Finding purifications with minimal entanglement, Phys. Rev.B 98 (2018) 235163 [arXiv:1711.01288].

  9. A. Bhattacharyya, T. Takayanagi and K. Umemoto, Entanglement of Purification in Free Scalar Field Theories, JHEP04 (2018) 132 [arXiv:1802.09545] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Bhattacharyya, A. Jahn, T. Takayanagi and K. Umemoto, Entanglement of Purification in Many Body Systems and Symmetry Breaking, Phys. Rev. Lett.122 (2019) 201601 [arXiv:1902.02369] [INSPIRE].

    Article  ADS  Google Scholar 

  11. T. Takayanagi and K. Umemoto, Entanglement of purification through holographic duality, Nature Phys.14 (2018) 573 [arXiv:1708.09393] [INSPIRE].

    Article  ADS  Google Scholar 

  12. P. Nguyen, T. Devakul, M.G. Halbasch, M.P. Zaletel and B. Swingle, Entanglement of purification: from spin chains to holography, JHEP01 (2018) 098 [arXiv:1709.07424] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

  15. M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    Article  ADS  Google Scholar 

  16. X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett.117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Bagchi and A.K. Pati, Monogamy, polygamy, and other properties of entanglement of purification, Phys. Rev.A 91 (2015) 042323 [arXiv:1502.01272].

  18. W.-Z. Guo, Entanglement of Purification and Projective Measurement in CFT, arXiv:1901.00330 [INSPIRE].

  19. N. Bao and I.F. Halpern, Holographic Inequalities and Entanglement of Purification, JHEP03 (2018) 006 [arXiv:1710.07643] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Hirai, K. Tamaoka and T. Yokoya, Towards Entanglement of Purification for Conformal Field Theories, PTEP2018 (2018) 063B03 [arXiv:1803.10539] [INSPIRE].

  21. R. Esp´ındola, A. Guijosa and J.F. Pedraza, Entanglement Wedge Reconstruction and Entanglement of Purification, Eur. Phys. J.C 78 (2018) 646 [arXiv:1804.05855] [INSPIRE].

  22. K. Umemoto and Y. Zhou, Entanglement of Purification for Multipartite States and its Holographic Dual, JHEP10 (2018) 152 [arXiv:1805.02625] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Chen, X. Dong, A. Lewkowycz and X.-L. Qi, Modular Flow as a Disentangler, JHEP12 (2018) 083 [arXiv:1806.09622] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. R.-Q. Yang, C.-Y. Zhang and W.-M. Li, Holographic entanglement of purification for thermofield double states and thermal quench, JHEP01 (2019) 114 [arXiv:1810.00420] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. C.A. Agón, J. De Boer and J.F. Pedraza, Geometric Aspects of Holographic Bit Threads, JHEP05 (2019) 075 [arXiv:1811.08879] [INSPIRE].

  26. N. Bao, G. Penington, J. Sorce and A.C. Wall, Beyond Toy Models: Distilling Tensor Networks in Full AdS/CFT, arXiv:1812.01171 [INSPIRE].

  27. N. Jokela and A. Pönni, Notes on entanglement wedge cross sections, JHEP07 (2019) 087 [arXiv:1904.09582] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. N. Bao, A. Chatwin-Davies, J. Pollack and G.N. Remmen, Towards a Bit Threads Derivation of Holographic Entanglement of Purification, JHEP07 (2019) 152 [arXiv:1905.04317] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    MATH  Google Scholar 

  31. H. Casini and M. Huerta, A Finite entanglement entropy and the c-theorem, Phys. Lett.B 600 (2004) 142 [hep-th/0405111] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review, Rev. Mod. Phys.82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

    Article  ADS  Google Scholar 

  33. H. Wilming and J. Eisert, Single-shot holographic compression from the area law, Phys. Rev. Lett.122 (2019) 190501 [arXiv:1809.10156] [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP07 (2017) 151 [arXiv:1704.05464] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. B. Czech, L. Lamprou, S. Mccandlish and J. Sully, Modular Berry Connection for Entangled Subregions in AdS/CFT, Phys. Rev. Lett.120 (2018) 091601 [arXiv:1712.07123] [INSPIRE].

    Article  ADS  Google Scholar 

  36. P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech.0710 (2007) P10004 [arXiv:0708.3750] [INSPIRE].

    Article  Google Scholar 

  37. T. Shimaji, T. Takayanagi and Z. Wei, Holographic Quantum Circuits from Splitting/Joining Local Quenches, JHEP03 (2019) 165 [arXiv:1812.01176] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. M.A. Rajabpour, Post measurement bipartite entanglement entropy in conformal field theories, Phys. Rev.B 92 (2015) 075108 [arXiv:1501.07831] [INSPIRE].

  39. M.A. Rajabpour, Entanglement entropy after a partial projective measurement in 1 + 1 dimensional conformal field theories: exact results, J. Stat. Mech.1606 (2016) 063109 [arXiv:1512.03940] [INSPIRE].

  40. T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, EPR Pairs, Local Projections and Quantum Teleportation in Holography, JHEP08 (2016) 077 [arXiv:1604.01772] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. J. Kudler-Flam and S. Ryu, Entanglement negativity and minimal entanglement wedge cross sections in holographic theories, Phys. Rev.D 99 (2019) 106014 [arXiv:1808.00446] [INSPIRE].

  42. K. Tamaoka, Entanglement Wedge Cross Section from the Dual Density Matrix, Phys. Rev. Lett.122 (2019) 141601 [arXiv:1809.09109] [INSPIRE].

  43. S. Dutta and T. Faulkner, A canonical purification for the entanglement wedge cross-section, arXiv:1905.00577 [INSPIRE].

  44. W.-Z. Guo, F.-L. Lin and J. Zhang, Nongeometric states in a holographic conformal field theory, Phys. Rev.D 99 (2019) 106001 [arXiv:1806.07595] [INSPIRE].

  45. N. Lashkari, H. Liu and S. Rajagopal, Perturbation Theory for the Logarithm of a Positive Operator, arXiv:1811.05619 [INSPIRE].

  46. T. Faulkner, Bulk Emergence and the RG Flow of Entanglement Entropy, JHEP05 (2015) 033 [arXiv:1412.5648] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. T. Faulkner, F.M. Haehl, E. Hijano, O. Parrikar, C. Rabideau and M. Van Raamsdonk, Nonlinear Gravity from Entanglement in Conformal Field Theories, JHEP08 (2017) 057 [arXiv:1705.03026] [INSPIRE].

  48. G. Sárosi and T. Ugajin, Modular Hamiltonians of excited states, OPE blocks and emergent bulk fields, JHEP01 (2018) 012 [arXiv:1705.01486] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Physics Division, National Center for Theoretical Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan

    Wu-zhong Guo

Authors
  1. Wu-zhong Guo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Wu-zhong Guo.

Additional information

ArXiv ePrint: 1904.12124

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Wz. Entanglement of purification and disentanglement in CFTs. J. High Energ. Phys. 2019, 80 (2019). https://doi.org/10.1007/JHEP09(2019)080

Download citation

  • Received: 21 May 2019

  • Revised: 09 July 2019

  • Accepted: 02 September 2019

  • Published: 11 September 2019

  • DOI: https://doi.org/10.1007/JHEP09(2019)080

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • AdS-CFT Correspondence

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature