Skip to main content

Advertisement

SpringerLink
Noncommutative gauge theories on D-branes in non-geometric backgrounds
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 09 September 2019

Noncommutative gauge theories on D-branes in non-geometric backgrounds

  • Chris Hull1 &
  • Richard J. Szabo2,3,4 

Journal of High Energy Physics volume 2019, Article number: 51 (2019) Cite this article

  • 251 Accesses

  • 14 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We investigate the noncommutative gauge theories arising on the worldvolumes of D-branes in non-geometric backgrounds obtained by T-duality from twisted tori. We revisit the low-energy effective description of D-branes on three-dimensional T-folds, examining both cases of parabolic and elliptic twists in detail. We give a detailed description of the decoupling limits and explore various physical consequences of the open string non-geometry. The T-duality monodromies of the non-geometric backgrounds lead to Morita duality monodromies of the noncommutative Yang-Mills theories induced on the D-branes. While the parabolic twists recover the well-known examples of noncommutative principal torus bundles from topological T-duality, the elliptic twists give new examples of noncommutative fibrations with non-geometric torus fibres. We extend these considerations to D-branes in backgrounds with R-flux, using the doubled geometry formulation, finding that both the non-geometric background and the D-brane gauge theory necessarily have explicit dependence on the dual coordinates, and so have no conventional formulation in spacetime.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. C.M. Hull, A geometry for non-geometric string backgrounds, JHEP10 (2005) 065 [hep-th/0406102] [INSPIRE].

  2. B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav.24 (2007) S773 [arXiv:0708.3984] [INSPIRE].

  3. D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory, Phys. Rept.566 (2014) 1 [arXiv:1306.2643] [INSPIRE].

  4. E. Plauschinn, Non-geometric backgrounds in string theory, Phys. Rept.798 (2019) 1 [arXiv:1811.11203] [INSPIRE].

  5. T.H. Buscher, A symmetry of the string background field equations, Phys. Lett.B 194 (1987) 59 [INSPIRE].

  6. T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett.B 201 (1988) 466 [INSPIRE].

  7. A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP05 (2006) 009 [hep-th/0512005] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  8. C. Hull and B. Zwiebach, Double field theory, JHEP09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

  9. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

  10. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

  11. A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP09 (2003) 054 [hep-th/0210209] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  12. S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP03 (2003) 061 [hep-th/0211182] [INSPIRE].

  13. C.M. Hull, Massive string theories from M-theory and F-theory, JHEP11 (1998) 027 [hep-th/9811021] [INSPIRE].

  14. J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP10 (2005) 085 [hep-th/0508133] [INSPIRE].

  15. J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, JHEP02 (2007) 095 [hep-th/0607015] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  16. S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP01 (2004) 024 [hep-th/0208174] [INSPIRE].

  17. A. Flournoy, B. Wecht and B. Williams, Constructing nongeometric vacua in string theory, Nucl. Phys.B 706 (2005) 127 [hep-th/0404217] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Lawrence, M.B. Schulz and B. Wecht, D-branes in nongeometric backgrounds, JHEP07 (2006) 038 [hep-th/0602025] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  19. C. Albertsson, T. Kimura and R.A. Reid-Edwards, D-branes and doubled geometry, JHEP04 (2009) 113 [arXiv:0806.1783] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  20. C. Albertsson, S.-H. Dai, P.-W. Kao and F.-L. Lin, Double field theory for double D-branes, JHEP09 (2011) 025 [arXiv:1107.0876] [INSPIRE].

  21. D.A. Lowe, H. Nastase and S. Ramgoolam, Massive IIA string theory and matrix theory compactification, Nucl. Phys.B 667 (2003) 55 [hep-th/0303173] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. I. Ellwood and A. Hashimoto, Effective descriptions of branes on non-geometric tori, JHEP12 (2006) 025 [hep-th/0607135] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  23. P. Grange and S. Schäfer-Nameki, T-duality with H-flux: Non-commutativity, T-folds and G × G-structure, Nucl. Phys.B 770 (2007) 123 [hep-th/0609084] [INSPIRE].

  24. S. Kawai and Y. Sugawara, D-branes in T-fold conformal field theory, JHEP02 (2008) 027 [arXiv:0709.0257] [INSPIRE].

  25. F. Cordonier-Tello, D. Lüst and E. Plauschinn, Open-string T-duality and applications to non-geometric backgrounds, JHEP08 (2018) 198 [arXiv:1806.01308] [INSPIRE].

  26. M.R. Douglas and C.M. Hull, D-branes and the noncommutative torus, JHEP02 (1998) 008 [hep-th/9711165] [INSPIRE].

  27. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE].

  28. L. Cornalba and R. Schiappa, Nonassociative star product deformations for D-brane world volumes in curved backgrounds, Commun. Math. Phys.225 (2002) 33 [hep-th/0101219] [INSPIRE].

  29. M. Herbst, A. Kling and M. Kreuzer, Star products from open strings in curved backgrounds, JHEP09 (2001) 014 [hep-th/0106159] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  30. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73 (2001) 977 [hep-th/0106048] [INSPIRE].

  31. R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept.378 (2003) 207 [hep-th/0109162] [INSPIRE].

  32. R.J. Szabo, Symmetry, gravity and noncommutativity, Class. Quant. Grav.23 (2006) R199 [hep-th/0606233] [INSPIRE].

  33. C.M. Hull and R.A. Reid-Edwards, Gauge symmetry, T-duality and doubled geometry, JHEP08 (2008) 043 [arXiv:0711.4818] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Dall’Agata, N. Prezas, H. Samtleben and M. Trigiante, Gauged supergravities from twisted doubled tori and non-geometric string backgrounds, Nucl. Phys.B 799 (2008) 80 [arXiv:0712.1026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP09 (2009) 014 [arXiv:0902.4032] [INSPIRE].

  36. R.A. Reid-Edwards, Flux compactifications, twisted tori and doubled geometry, JHEP06 (2009) 085 [arXiv:0904.0380] [INSPIRE].

  37. I.V. Lavrinenko, H. Lü and C.N. Pope, Fiber bundles and generalized dimensional reduction, Class. Quant. Grav.15 (1998) 2239 [hep-th/9710243] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G.W. Gibbons and P. Rychenkova, Single sided domain walls in M-theory, J. Geom. Phys.32 (2000) 311 [hep-th/9811045] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. N. Chaemjumrus and C.M. Hull, in preparation.

  40. R. Blumenhagen and E. Plauschinn, Nonassociative gravity in string theory?, J. Phys.A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP12 (2010) 084 [arXiv:1010.1361] [INSPIRE].

  42. R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric fluxes, asymmetric strings and nonassociative geometry, J. Phys.A 44 (2011) 385401 [arXiv:1106.0316] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and quantization of non-geometric flux backgrounds, JHEP09 (2012) 012 [arXiv:1207.0926] [INSPIRE].

  44. D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP06 (2013) 021 [arXiv:1211.6437] [INSPIRE].

  45. R.J. Szabo, Higher quantum geometry and non-geometric string theory, PoS(CORFU2017)151 [arXiv:1803.08861] [INSPIRE].

  46. V. Mathai and J.M. Rosenberg, T-duality for torus bundles with H-fluxes via noncommutative topology, Commun. Math. Phys.253 (2004) 705 [hep-th/0401168] [INSPIRE].

  47. P. Bouwknegt, K. Hannabuss and V. Mathai, Nonassociative tori and applications to T-duality, Commun. Math. Phys.264 (2006) 41 [hep-th/0412092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Brodzki, V. Mathai, J.M. Rosenberg and R.J. Szabo, D-Branes, RR-Fields and Duality on Noncommutative Manifolds, Commun. Math. Phys.277 (2008) 643 [hep-th/0607020] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. P. Bouwknegt and A.S. Pande, Topological T-duality and T-folds, Adv. Theor. Math. Phys.13 (2009) 1519 [arXiv:0810.4374] [INSPIRE].

  50. B. Pioline and A.S. Schwarz, Morita equivalence and T -duality (or B versus θ), JHEP08 (1999) 021 [hep-th/9908019] [INSPIRE].

  51. J. Ambjørn, Y.M. Makeenko, J. Nishimura and R.J. Szabo, Lattice gauge fields and discrete noncommutative Yang-Mills theory, JHEP05 (2000) 023 [hep-th/0004147] [INSPIRE].

    Article  Google Scholar 

  52. C.M. Hull and R.A. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys.57 (2009) 862 [hep-th/0503114] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. K. Hannabuss and V. Mathai, Noncommutative principal torus bundles via parametrised strict deformation quantization, Proc. Symp. Pure Math.81 (2010) 133 [arXiv:0911.1886] [INSPIRE].

  54. V.E. Marotta and R.J. Szabo, Para-Hermitian Geometry, Dualities and Generalized Flux Backgrounds, Fortsch. Phys.67 (2019) 1800093 [arXiv:1810.03953] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  55. D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math.3 (1999) 819 [hep-th/9907189] [INSPIRE].

    Article  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, U.K.

    Chris Hull

  2. Department of Mathematics, Heriot-Watt University, Colin Maclaurin Building, Riccarton, Edinburgh, EH14 4AS, U.K.

    Richard J. Szabo

  3. Maxwell Institute for Mathematical Sciences, Edinburgh, U.K.

    Richard J. Szabo

  4. The Higgs Centre for Theoretical Physics, Edinburgh, U.K.

    Richard J. Szabo

Authors
  1. Chris Hull
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Richard J. Szabo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Richard J. Szabo.

Additional information

ArXiv ePrint: 1903.04947

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hull, C., Szabo, R.J. Noncommutative gauge theories on D-branes in non-geometric backgrounds. J. High Energ. Phys. 2019, 51 (2019). https://doi.org/10.1007/JHEP09(2019)051

Download citation

  • Received: 06 June 2019

  • Accepted: 26 August 2019

  • Published: 09 September 2019

  • DOI: https://doi.org/10.1007/JHEP09(2019)051

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • D-branes
  • Flux compactifications
  • Non-Commutative Geometry
  • String Duality
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.