Journal of High Energy Physics

, 2018:155 | Cite as

Homological classification of topological terms in sigma models on homogeneous spaces

  • Joe DavighiEmail author
  • Ben Gripaios
Open Access
Regular Article - Theoretical Physics


We classify the topological terms (in a sense to be made precise) that may appear in a non-linear sigma model based on maps from an arbitrary worldvolume manifold to a homogeneous space G/H (where G is an arbitrary Lie group and HG). We derive a new condition for G-invariance of topological terms, which is necessary and sufficient (at least when G is connected), and discuss a variety of examples in quantum mechanics and quantum field theory. In the present work we discuss only terms that may be written in terms of (possibly only locally-defined) differential forms on G/H, leading to an action that is manifestly local. Such terms come in one of two types, with prototypical quantum-mechanical examples given by the Aharonov-Bohm effect and the Dirac monopole. The classification is based on the observation that, for topological terms, the maps from the worldvolume to G/H may be replaced by singular homology cycles on G/H. In a forthcoming paper we apply the results to phenomenological models in which the Higgs boson is composite.


Effective Field Theories Sigma Models Topological Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B. Gripaios and D. Sutherland, Quantum mechanics of a generalised rigid body, J. Phys. A 49 (2016) 195201 [arXiv:1504.01406] [INSPIRE].ADSzbMATHGoogle Scholar
  2. [2]
    S. Weinberg, Dynamical approach to current algebra, Phys. Rev. Lett. 18 (1967) 188 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B. Gripaios and D. Sutherland, Quantum Field Theory of Fluids, Phys. Rev. Lett. 114 (2015) 071601 [arXiv:1406.4422] [INSPIRE].
  5. [5]
    A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev. D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].
  6. [6]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
  7. [7]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. II, Phys. Rev. 177 (1969) 2247 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    E. Witten, Current Algebra, Baryons and Quark Confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].
  11. [11]
    S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev. D 89 (2014) 045016 [arXiv:1107.0732] [INSPIRE].
  12. [12]
    L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, Wess-Zumino Terms for Relativistic Fluids, Superfluids, Solids and Supersolids, Phys. Rev. Lett. 114 (2015) 091601 [arXiv:1403.6509] [INSPIRE].
  13. [13]
    G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. D’Hoker and S. Weinberg, General effective actions, Phys. Rev. D 50 (1994) R6050 [hep-ph/9409402] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys. 129 (1990) 393 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    T.T. Wu and C.N. Yang, Dirac’s Monopole Without Strings: Classical Lagrangian Theory, Phys. Rev. D 14 (1976) 437 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    O. Alvarez, Topological Quantization and Cohomology, Commun. Math. Phys. 100 (1985) 279 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    N.S. Manton, A model for the anomalies in gauge field theory, NSF-ITP-83-164 (1983) [INSPIRE].
  19. [19]
    N.S. Manton, The Schwinger Model and Its Axial Anomaly, Annals Phys. 159 (1985) 220 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M.F. Atiyah, Topological quantum field theory, Pub. Math. IH ÉS 68 (1988) 175.Google Scholar
  21. [21]
    J. Vick, Homology Theory: An Introduction to Algebraic Topology, Graduate Texts in Mathematics, Springer, New York U.S.A. (1994).Google Scholar
  22. [22]
    D.E. Soper, Classical field theory, Wiley, New York U.S.A. (1976).Google Scholar
  23. [23]
    A. D’Adda, M. Lüscher and P. Di Vecchia, A 1/n Expandable Series of Nonlinear σ-models with Instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].
  24. [24]
    S.R. Coleman, More About the Massive Schwinger Model, Annals Phys. 101 (1976) 239 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.S. Schwinger, Gauge Invariance and Mass. II, Phys. Rev. 128 (1962) 2425 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Davighi and B. Gripaios, Topological terms in Composite Higgs Models, arXiv:1808.04154 [INSPIRE].
  29. [29]
    R. Bott and L. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, Springer, New York U.S.A. (1995).Google Scholar
  30. [30]
    P.A. Horváthy, Prequantisation from path integral viewpoint, in Differential Geometric Methods in Mathematical Physics, H.-D. Doebner, S.I. Andersson and H.R. Petry eds., Springer (1982), pp. 197-206.Google Scholar
  31. [31]
    D.S. Freed, G.W. Moore and G. Segal, Heisenberg Groups and Noncommutative Fluxes, Annals Phys. 322 (2007) 236 [hep-th/0605200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    C. Baer and C. Becker, Differential Characters and Geometric Chains, arXiv:1303.6457.
  33. [33]
    A. Schwarz, Topology for physicists, Grundlehren der mathematischen Wissenschaften, Springer, New York U.S.A. (1994).CrossRefGoogle Scholar
  34. [34]
    C. Chevalley and S. Eilenberg, Cohomology Theory of Lie Groups and Lie Algebras, Trans. Am. Math. Soc. 63 (1948) 85 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  35. [35]
    D.S. Freed, Pions and Generalized Cohomology, J. Diff. Geom. 80 (2008) 45 [hep-th/0607134] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  36. [36]
    B. Gripaios, M. Nardecchia and T. You, On the Structure of Anomalous Composite Higgs Models, Eur. Phys. J. C 77 (2017) 28 [arXiv:1605.09647] [INSPIRE].
  37. [37]
    P. Forgács and N.S. Manton, Space-Time Symmetries in Gauge Theories, Commun. Math. Phys. 72 (1980) 15 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    R. Jackiw and N.S. Manton, Symmetries and Conservation Laws in Gauge Theories, Annals Phys. 127 (1980) 257 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    J. Davighi, B. Gripaios and O. Randal-Williams, Invariant differential characters and quantum field theory, to appear.Google Scholar
  40. [40]
    D. Finkelstein and J. Rubinstein, Connection between spin, statistics and kinks, J. Math. Phys. 9 (1968) 1762 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.
  2. 2.Cavendish LaboratoryUniversity of CambridgeCambridgeU.K.

Personalised recommendations