Skip to main content

Advertisement

SpringerLink
Neutrino signatures in primordial non-gaussianities
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 05 September 2018

Neutrino signatures in primordial non-gaussianities

  • Xingang Chen1,
  • Yi Wang2,3 &
  • Zhong-Zhi Xianyu4,5 

Journal of High Energy Physics volume 2018, Article number: 22 (2018) Cite this article

  • 344 Accesses

  • 32 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study the cosmological collider phenomenology of neutrinos in an effective field theory. The mass spectrum of neutrinos and their characteristic oscillatory signatures in the squeezed limit bispectrum are computed. Both dS-covariant and slow-roll corrections are considered, so is the scenario of electroweak symmetry breaking during inflation. Interestingly, we show that the slow-roll background of the inflaton provides a chemical potential for the neutrino production. The chemical potential greatly amplifies the oscillatory signal and makes the signal observably large for heavy neutrinos without the need of fine tuning.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. X. Chen and Y. Wang, Large non-gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

    ADS  Google Scholar 

  2. X. Chen and Y. Wang, Quasi-single field inflation and non-gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    Article  ADS  Google Scholar 

  3. D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

    ADS  Google Scholar 

  4. V. Assassi, D. Baumann and D. Green, On soft limits of inflationary correlation functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].

    Article  ADS  Google Scholar 

  5. E. Sefusatti, J.R. Fergusson, X. Chen and E.P.S. Shellard, Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background, JCAP 08 (2012) 033 [arXiv:1204.6318] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Norena, L. Verde, G. Barenboim and C. Bosch, Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias, JCAP 08 (2012) 019 [arXiv:1204.6324] [INSPIRE].

    Article  ADS  Google Scholar 

  7. X. Chen and Y. Wang, Quasi-single field inflation with large mass, JCAP 09 (2012) 021 [arXiv:1205.0160] [INSPIRE].

    Article  ADS  Google Scholar 

  8. T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-gaussianity from heavy fields, JCAP 11 (2013) 043 [arXiv:1306.3691] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Emami, Spectroscopy of masses and couplings during inflation, JCAP 04 (2014) 031 [arXiv:1311.0184] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Kehagias and A. Riotto, High energy physics signatures from inflation and conformal symmetry of de Sitter, Fortsch. Phys. 63 (2015) 531 [arXiv:1501.03515] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].

  13. E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of massive primordial fields on large-scale structure, JCAP 02 (2016) 017 [arXiv:1504.05993] [INSPIRE].

    Article  ADS  Google Scholar 

  14. X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to standard model fields in inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. H. Lee, D. Baumann and G.L. Pimentel, Non-gaussianity as a particle detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for Cosmological Collider Physics, JCAP 03 (2017) 050 [arXiv:1610.06559] [INSPIRE].

    Article  ADS  Google Scholar 

  17. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard model background of the cosmological collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

    Article  ADS  Google Scholar 

  18. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard model mass spectrum in inflationary universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. Kehagias and A. Riotto, On the inflationary perturbations of massive higher-spin fields, JCAP 07 (2017) 046 [arXiv:1705.05834] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi single field inflation in the non-perturbative regime, JHEP 06 (2018) 105 [arXiv:1706.09971] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A.V. Iyer, S. Pi, Y. Wang, Z. Wang and S. Zhou, Strongly Coupled Quasi-Single Field Inflation, JCAP 01 (2018) 041 [arXiv:1710.03054] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  22. H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Non-Gaussian Enhancements of Galactic Halo Correlations in Quasi-Single Field Inflation, Phys. Rev. D 97 (2018) 123528 [arXiv:1711.02667] [INSPIRE].

    ADS  Google Scholar 

  23. S. Kumar and R. Sundrum, Heavy-lifting of gauge theories by cosmic inflation, JHEP 05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. G. Franciolini, A. Kehagias and A. Riotto, Imprints of spinning particles on primordial cosmological perturbations, JCAP 02 (2018) 023 [arXiv:1712.06626] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. X. Tong, Y. Wang and S. Zhou, Unsuppressed primordial standard clocks in warm quasi-single field inflation, JCAP 06 (2018) 013 [arXiv:1801.05688] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Moradinezhad Dizgah, H. Lee, J.B. Muñoz and C. Dvorkin, Galaxy bispectrum from massive spinning particles, JCAP 05 (2018) 013 [arXiv:1801.07265] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Saito, Cosmological correlation functions including a massive scalar field and an arbitrary number of soft-gravitons, Ph.D. thesis, Osaka University, Osaka, Japan (2018), arXiv:1803.01287 [INSPIRE].

  28. G. Franciolini, A. Kehagias, A. Riotto and M. Shiraishi, Detecting higher spin fields through statistical anisotropy in the CMB bispectrum, Phys. Rev. D 98 (2018) 043533 [arXiv:1803.03814] [INSPIRE].

    Google Scholar 

  29. X. Chen et al., Quantum standard clocks in the primordial trispectrum, JCAP 05 (2018) 049 [arXiv:1803.04412] [INSPIRE].

    Article  ADS  Google Scholar 

  30. R. Saito and T. Kubota, Heavy particle signatures in cosmological correlation functions with tensor modes, JCAP 06 (2018) 009 [arXiv:1804.06974] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Minkowski, μ → eγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421.

  32. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  33. T. Yanagida, Horizontal symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].

    Article  ADS  Google Scholar 

  34. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  35. X. Chen, Primordial features as evidence for inflation, JCAP 01 (2012) 038 [arXiv:1104.1323] [INSPIRE].

    Article  Google Scholar 

  36. X. Chen, Fingerprints of primordial universe paradigms as features in density perturbations, Phys. Lett. B 706 (2011) 111 [arXiv:1106.1635] [INSPIRE].

    Article  ADS  Google Scholar 

  37. X. Chen and C. Ringeval, Searching for standard clocks in the primordial universe, JCAP 08 (2012) 014 [arXiv:1205.6085] [INSPIRE].

    Article  ADS  Google Scholar 

  38. X. Chen and M.H. Namjoo, Standard clock in primordial density perturbations and cosmic microwave background, Phys. Lett. B 739 (2014) 285 [arXiv:1404.1536] [INSPIRE].

    Article  ADS  Google Scholar 

  39. X. Chen, M.H. Namjoo and Y. Wang, Models of the primordial standard clock, JCAP 02 (2015) 027 [arXiv:1411.2349] [INSPIRE].

    Article  ADS  Google Scholar 

  40. X. Chen, M.H. Namjoo and Y. Wang, Quantum primordial standard clocks, JCAP 02 (2016) 013 [arXiv:1509.03930] [INSPIRE].

    ADS  Google Scholar 

  41. X. Chen, M.H. Namjoo and Y. Wang, Probing the primordial universe using massive fields, Int. J. Mod. Phys. D 26 (2016) 1740004 [arXiv:1601.06228] [INSPIRE].

    ADS  Google Scholar 

  42. X. Chen, M.H. Namjoo and Y. Wang, A direct probe of the evolutionary history of the primordial universe, Sci. China Phys. Mech. Astron. 59 (2016) 101021 [arXiv:1608.01299] [INSPIRE].

    Article  Google Scholar 

  43. M. Srednicki, Quantum field theory, Cambridge University Press, Cambridge U.K. (2007).

    Book  MATH  Google Scholar 

  44. H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. B. Allen and C.A. Lütken, Spinor two point functions in maximally symmetric spaces, Commun. Math. Phys. 106 (1986) 201 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. P. Adshead and E.I. Sfakianakis, Fermion production during and after axion inflation, JCAP 11 (2015) 021 [arXiv:1508.00891] [INSPIRE].

    Article  ADS  Google Scholar 

  47. P. Adshead et al., Phenomenology of fermion production during axion inflation, JCAP 06 (2018) 020 [arXiv:1803.04501] [INSPIRE].

    Article  ADS  Google Scholar 

  48. X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP 12 (2017) 006 [arXiv:1703.10166] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].

  50. X. Chen, Primordial non-gaussianities from inflation models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].

    Article  ADS  Google Scholar 

  51. Y. Wang, Inflation, cosmic perturbations and non-gaussianities, Commun. Theor. Phys. 62 (2014) 109 [arXiv:1303.1523] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA, 02138, U.S.A.

    Xingang Chen

  2. Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China

    Yi Wang

  3. Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China

    Yi Wang

  4. Center of Mathematical Sciences and Applications, Harvard University, 20 Garden Street, Cambridge, MA, 02138, U.S.A.

    Zhong-Zhi Xianyu

  5. Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA, 02138, U.S.A.

    Zhong-Zhi Xianyu

Authors
  1. Xingang Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yi Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zhong-Zhi Xianyu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Zhong-Zhi Xianyu.

Additional information

ArXiv ePrint: 1805.02656

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, Y. & Xianyu, ZZ. Neutrino signatures in primordial non-gaussianities. J. High Energ. Phys. 2018, 22 (2018). https://doi.org/10.1007/JHEP09(2018)022

Download citation

  • Received: 28 May 2018

  • Accepted: 01 September 2018

  • Published: 05 September 2018

  • DOI: https://doi.org/10.1007/JHEP09(2018)022

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Neutrino Physics
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.