Journal of High Energy Physics

, 2018:17 | Cite as

Electroweak corrections in the 2HDM for neutral scalar Higgs-boson production through gluon fusion

  • Laura Jenniches
  • Christian SturmEmail author
  • Sandro Uccirati
Open Access
Regular Article - Theoretical Physics


We have computed the two-loop, electroweak corrections to the production of a light and a heavy neutral, scalar Higgs-boson through the important gluon fusion process in the Two-Higgs-Doublet Model. We provide our results in various renormalization schemes for different scenarios and benchmark points, which will be valuable for experimental studies at the LHC. We describe the technicalities of our two-loop calculation and augment it by a phenomenological discussion. Our results are also applicable to the gluonic neutral, scalar Higgs-boson decays.


Beyond Standard Model Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  4. [4]
    T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
  6. [6]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [INSPIRE].ADSGoogle Scholar
  7. [7]
    ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE].
  8. [8]
    ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + + and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].
  9. [9]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  10. [10]
    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state from pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 412 [arXiv:1506.00285] [INSPIRE].
  11. [11]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
  12. [12]
    ATLAS collaboration, Search for a multi-Higgs-boson cascade in \( {W}^{+}{W}^{-}b\overline{b} \) events with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 89 (2014) 032002 [arXiv:1312.1956] [INSPIRE].
  13. [13]
    C.T. Potter, ATLAS Searches for Beyond the Standard Model Higgs Bosons, in proceedings of the Meeting of the APS Division of Particles and Fields (DPF 2013), Santa Cruz, California, U.S.A., 13–17 August 2013, arXiv:1310.0515 [INSPIRE].
  14. [14]
    ATLAS collaboration, Search for Higgs bosons in Two-Higgs-Doublet models in the HWWeνμν channel with the ATLAS detector, ATLAS-CONF-2013-027 [INSPIRE].
  15. [15]
    CMS collaboration, Combined measurements of the Higgs bosons couplings at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-031 [INSPIRE].
  16. [16]
    CMS collaboration, Searches for production of two Higgs bosons using the CMS detector, Nucl. Part. Phys. Proc. 273–275 (2016) 764 [INSPIRE].
  17. [17]
    CMS collaboration, Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons, Phys. Lett. B 759 (2016) 369 [arXiv:1603.02991] [INSPIRE].
  18. [18]
    CMS collaboration, Search for a low-mass pseudoscalar Higgs boson produced in association with a \( b\overline{b} \) pair in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 758 (2016) 296 [arXiv:1511.03610] [INSPIRE].
  19. [19]
    CMS collaboration, Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with hττ, Phys. Lett. B 755 (2016) 217 [arXiv:1510.01181] [INSPIRE].
  20. [20]
    CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].
  21. [21]
    CMS collaboration, Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in \( {\ell}^{+}{\ell}^{-}b\overline{b} \) final states, Phys. Lett. B 748 (2015) 221 [arXiv:1504.04710] [INSPIRE].
  22. [22]
    LHC Higgs Cross Section Working Group, D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  23. [23]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Passarino, C. Sturm and S. Uccirati, Complete Electroweak Corrections to Higgs production in a Standard Model with four generations at the LHC, Phys. Lett. B 706 (2011) 195 [arXiv:1108.2025] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Denner et al., Higgs Production and Decay with a Fourth Standard-Model-Like Fermion Generation, Eur. Phys. J. C 72 (2012) 1992 [arXiv:1111.6395] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Denner, L. Jenniches, J.-N. Lang and C. Sturm, Gauge-independent \( \overline{MS} \) renormalization in the 2HDM, JHEP 09 (2016) 115 [arXiv:1607.07352] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A. Denner, J.-N. Lang and S. Uccirati, NLO electroweak corrections in extended Higgs Sectors with RECOLA2, JHEP 07 (2017) 087 [arXiv:1705.06053] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L. Altenkamp, S. Dittmaier and H. Rzehak, Renormalization schemes for the Two-Higgs-Doublet Model and applications to hWW/ZZ → 4 fermions, JHEP 09 (2017) 134 [arXiv:1704.02645] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Altenkamp, S. Dittmaier and H. Rzehak, Precision calculations for hWW/ZZ → 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f, JHEP 03 (2018) 110 [arXiv:1710.07598] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO Computational Techniques: The Cases Hγγ and Hgg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Kanemura, T. Kasai and Y. Okada, Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model, Phys. Lett. B 471 (1999) 182 [hep-ph/9903289] [INSPIRE].
  33. [33]
    G.C. Branco, L. Lavoura and J.P. Silva, CP Violation, Int. Ser. Monogr. Phys. 103 (1999) 1 [INSPIRE].Google Scholar
  34. [34]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  35. [35]
    E.A. Paschos, Diagonal Neutral Currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  37. [37]
    J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D 23 (1981) 2001 [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Krause, R. Lorenz, M. Mühlleitner, R. Santos and H. Ziesche, Gauge-independent Renormalization of the 2-Higgs-Doublet Model, JHEP 09 (2016) 143 [arXiv:1605.04853] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Actis, A. Ferroglia, M. Passera and G. Passarino, Two-Loop Renormalization in the Standard Model. Part I: Prolegomena, Nucl. Phys. B 777 (2007) 1 [hep-ph/0612122] [INSPIRE].
  40. [40]
    M. Krause, M. Mühlleitner, R. Santos and H. Ziesche, Higgs-to-Higgs boson decays in a 2HDM at next-to-leading order, Phys. Rev. D 95 (2017) 075019 [arXiv:1609.04185] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Kanemura, M. Kikuchi and K. Yagyu, Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements, Nucl. Phys. B 896 (2015) 80 [arXiv:1502.07716] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    J.R. Espinosa and I. Navarro, Scale independent mixing angles, Phys. Rev. D 66 (2002) 016004 [hep-ph/0109126] [INSPIRE].
  43. [43]
    J.R. Espinosa and Y. Yamada, Scale independent and gauge independent mixing angles for scalar particles, Phys. Rev. D 67 (2003) 036003 [hep-ph/0207351] [INSPIRE].
  44. [44]
    J.M. Cornwall, Dynamical Mass Generation in Continuum QCD, Phys. Rev. D 26 (1982) 1453 [INSPIRE].ADSGoogle Scholar
  45. [45]
    J.M. Cornwall and J. Papavassiliou, Gauge Invariant Three Gluon Vertex in QCD, Phys. Rev. D 40 (1989) 3474 [INSPIRE].ADSGoogle Scholar
  46. [46]
    J. Papavassiliou, Gauge Invariant Proper Selfenergies and Vertices in Gauge Theories with Broken Symmetry, Phys. Rev. D 41 (1990) 3179 [INSPIRE].ADSGoogle Scholar
  47. [47]
    G. Degrassi and A. Sirlin, Gauge invariant selfenergies and vertex parts of the Standard Model in the pinch technique framework, Phys. Rev. D 46 (1992) 3104 [INSPIRE].ADSGoogle Scholar
  48. [48]
    G. Degrassi, B.A. Kniehl and A. Sirlin, Gauge-invariant formulation of the S, T, and U parameters, Phys. Rev. D 48 (1993) R3963 [INSPIRE].ADSGoogle Scholar
  49. [49]
    J. Papavassiliou, Gauge independent transverse and longitudinal self energies and vertices via the pinch technique, Phys. Rev. D 50 (1994) 5958 [hep-ph/9406258] [INSPIRE].
  50. [50]
    J. Papavassiliou and A. Pilaftsis, Gauge invariance and unstable particles, Phys. Rev. Lett. 75 (1995) 3060 [hep-ph/9506417] [INSPIRE].
  51. [51]
    J. Papavassiliou and A. Pilaftsis, A Gauge independent approach to resonant transition amplitudes, Phys. Rev. D 53 (1996) 2128 [hep-ph/9507246] [INSPIRE].
  52. [52]
    J. Papavassiliou and A. Pilaftsis, Gauge invariant resummation formalism for two point correlation functions, Phys. Rev. D 54 (1996) 5315 [hep-ph/9605385] [INSPIRE].
  53. [53]
    B.A. Kniehl, C.P. Palisoc and A. Sirlin, Higgs boson production and decay close to thresholds, Nucl. Phys. B 591 (2000) 296 [hep-ph/0007002] [INSPIRE].
  54. [54]
    D. Binosi and J. Papavassiliou, Pinch technique and the Batalin-Vilkovisky formalism, Phys. Rev. D 66 (2002) 025024 [hep-ph/0204128] [INSPIRE].
  55. [55]
    D. Binosi and J. Papavassiliou, The Two loop pinch technique in the electroweak sector, Phys. Rev. D 66 (2002) 076010 [hep-ph/0204308] [INSPIRE].
  56. [56]
    G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
  57. [57]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  59. [59]
    S. Actis, A. Ferroglia, G. Passarino, M. Passera, C. Sturm and S. Uccirati, GraphShot, a Form package for automatic generation and manipulation of one- and two-loop Feynman diagrams, unpublished.Google Scholar
  60. [60]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  62. [62]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  63. [63]
    G. Passarino, An Approach toward the numerical evaluation of multiloop Feynman diagrams, Nucl. Phys. B 619 (2001) 257 [hep-ph/0108252] [INSPIRE].
  64. [64]
    G. Passarino and S. Uccirati, Algebraic numerical evaluation of Feynman diagrams: Two loop selfenergies, Nucl. Phys. B 629 (2002) 97 [hep-ph/0112004] [INSPIRE].
  65. [65]
    A. Ferroglia, M. Passera, G. Passarino and S. Uccirati, Two loop vertices in quantum field theory: Infrared convergent scalar configurations, Nucl. Phys. B 680 (2004) 199 [hep-ph/0311186] [INSPIRE].
  66. [66]
    G. Passarino and S. Uccirati, Two-loop vertices in quantum field theory: Infrared and collinear divergent configurations, Nucl. Phys. B 747 (2006) 113 [hep-ph/0603121] [INSPIRE].
  67. [67]
    S. Actis, A. Ferroglia, G. Passarino, M. Passera and S. Uccirati, Two-loop tensor integrals in quantum field theory, Nucl. Phys. B 703 (2004) 3 [hep-ph/0402132] [INSPIRE].
  68. [68]
    J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Benchmarks for Higgs Pair Production and Heavy Higgs boson Searches in the Two-Higgs-Doublet Model of Type II, Phys. Rev. D 90 (2014) 015008 [arXiv:1403.1264] [INSPIRE].ADSGoogle Scholar
  69. [69]
    D. Chowdhury and O. Eberhardt, Update of Global Two-Higgs-Doublet Model Fits, JHEP 05 (2018) 161 [arXiv:1711.02095] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P. Basler, P.M. Ferreira, M. Mühlleitner and R. Santos, High scale impact in alignment and decoupling in two-Higgs doublet models, Phys. Rev. D 97 (2018) 095024 [arXiv:1710.10410] [INSPIRE].ADSGoogle Scholar
  71. [71]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  72. [72]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  73. [73]
    A. Denner and S. Dittmaier, The Complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
  74. [74]
    J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  75. [75]
    J.C. Collins and J.A.M. Vermaseren, Axodraw Version 2, arXiv:1606.01177 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Universität Würzburg, Institut für Theoretische Physik und Astrophysik, Lehrstuhl für Theoretische Physik II, Campus Hubland NordWürzburgGermany
  2. 2.Università di Torino and INFNTorinoItaly

Personalised recommendations