Machine learning in the string landscape

Abstract

We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of \( \frac{4}{3}\times 2.96\times {10}^{755} \) F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    W. Taylor and Y.-N. Wang, The F-theory geometry with most flux vacua, JHEP 12 (2015) 164 [arXiv:1511.03209] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. [5]

    J. Halverson, C. Long and B. Sung, On Algorithmic Universality in F-theory Compactifications, arXiv:1706.02299 [INSPIRE].

  6. [6]

    F. Denef and M.R. Douglas, Computational complexity of the landscape. I., Annals Phys. 322 (2007) 1096 [hep-th/0602072] [INSPIRE].

  7. [7]

    M. Cvetič, I. Garcia-Etxebarria and J. Halverson, On the computation of non-perturbative effective potentials in the string theory landscape: IIB/F-theory perspective, Fortsch. Phys. 59 (2011) 243 [arXiv:1009.5386] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    F. Denef, M.R. Douglas, B. Greene and C. Zukowski, Computational complexity of the landscape II — Cosmological considerations, arXiv:1706.06430 [INSPIRE].

  9. [9]

    N. Bao, R. Bousso, S. Jordan and B. Lackey, Fast optimization algorithms and the cosmological constant, arXiv:1706.08503 [INSPIRE].

  10. [10]

    Y.-H. He, Deep-Learning the Landscape, arXiv:1706.02714 [INSPIRE].

  11. [11]

    F. Ruehle, Evolving neural networks with genetic algorithms to study the String Landscape, JHEP 08 (2017) 038 [arXiv:1706.07024] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    D. Krefl and R.-K. Seong, Machine Learning of Calabi-Yau Volumes, arXiv:1706.03346 [INSPIRE].

  13. [13]

    T. Mitchell, Machine Learning, McGraw-Hill (1997).

  14. [14]

    C. Bishop, Pattern Recognition and Machine Learning, Springer Publishing Company (2006).

  15. [15]

    M. Kreuzer and H. Skarke, Classification of reflexive polyhedra in three-dimensions, Adv. Theor. Math. Phys. 2 (1998) 847 [hep-th/9805190] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    J. Halverson and J. Tian, Cost of seven-brane gauge symmetry in a quadrillion F-theory compactifications, Phys. Rev. D 95 (2017) 026005 [arXiv:1610.08864] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

  19. [19]

    N. Nakayama, On Weierstrass models, in Algebraic geometry and commutative algebra. Volume II, Kinokuniya, Tokyo Japan (1988), pp. 405–431.

  20. [20]

    L.B. Anderson and W. Taylor, Geometric constraints in dual F-theory and heterotic string compactifications, JHEP 08 (2014) 025 [arXiv:1405.2074] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    J. Marsano and S. Schäfer-Nameki, Yukawas, G-flux and Spectral Covers from Resolved Calabi-Yau’s, JHEP 11 (2011) 098 [arXiv:1108.1794] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    C. Lawrie and S. Schäfer-Nameki, The Tate Form on Steroids: Resolution and Higher Codimension Fibers, JHEP 04 (2013) 061 [arXiv:1212.2949] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    H. Hayashi, C. Lawrie, D.R. Morrison and S. Schäfer-Nameki, Box Graphs and Singular Fibers, JHEP 05 (2014) 048 [arXiv:1402.2653] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    A.P. Braun and S. Schäfer-Nameki, Box Graphs and Resolutions I, Nucl. Phys. B 905 (2016) 447 [arXiv:1407.3520] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    A.P. Braun and S. Schäfer-Nameki, Box Graphs and Resolutions II: From Coulomb Phases to Fiber Faces, Nucl. Phys. B 905 (2016) 480 [arXiv:1511.01801] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    A. Grassi, J. Halverson and J.L. Shaneson, Matter From Geometry Without Resolution, JHEP 10 (2013) 205 [arXiv:1306.1832] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    A. Grassi, J. Halverson and J.L. Shaneson, Non-Abelian Gauge Symmetry and the Higgs Mechanism in F-theory, Commun. Math. Phys. 336 (2015) 1231 [arXiv:1402.5962] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    A. Grassi, J. Halverson and J.L. Shaneson, Geometry and Topology of String Junctions, arXiv:1410.6817 [INSPIRE].

  29. [29]

    A. Grassi, J. Halverson, F. Ruehle and J.L. Shaneson, Dualities of Deformed \( \mathcal{N}=2 \) SCFTs from Link Monodromy on D3-brane States, arXiv:1611.01154 [INSPIRE].

  30. [30]

    D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 (2012) 1072 [arXiv:1201.1943] [INSPIRE].

    ADS  MATH  Google Scholar 

  31. [31]

    A. Grassi, J. Halverson, J. Shaneson and W. Taylor, Non-Higgsable QCD and the Standard Model Spectrum in F-theory, JHEP 01 (2015) 086 [arXiv:1409.8295] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    A.P. Braun and T. Watari, The Vertical, the Horizontal and the Rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications, JHEP 01 (2015) 047 [arXiv:1408.6167] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    T. Watari, Statistics of F-theory flux vacua for particle physics, JHEP 11 (2015) 065 [arXiv:1506.08433] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    J. Halverson, Strong Coupling in F-theory and Geometrically Non-Higgsable Seven-branes, Nucl. Phys. B 919 (2017) 267 [arXiv:1603.01639] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    J. Halverson and W. Taylor, \( {\mathrm{\mathbb{P}}}^1 \) -bundle bases and the prevalence of non-Higgsable structure in 4D F-theory models, JHEP 09 (2015) 086 [arXiv:1506.03204] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    W. Taylor and Y.-N. Wang, A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua, JHEP 01 (2016) 137 [arXiv:1510.04978] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    D.R. Morrison and W. Taylor, Non-Higgsable clusters for 4D F-theory models, JHEP 05 (2015) 080 [arXiv:1412.6112] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys. 60 (2012) 1187 [arXiv:1204.0283] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  39. [39]

    W. Taylor, On the Hodge structure of elliptically fibered Calabi-Yau threefolds, JHEP 08 (2012) 032 [arXiv:1205.0952] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].

  41. [41]

    G. Martini and W. Taylor, 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces, JHEP 06 (2015) 061 [arXiv:1404.6300] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    S.B. Johnson and W. Taylor, Calabi-Yau threefolds with large h 2,1, JHEP 10 (2014) 23 [arXiv:1406.0514] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    W. Taylor and Y.-N. Wang, Non-toric bases for elliptic Calabi-Yau threefolds and 6D F-theory vacua, arXiv:1504.07689 [INSPIRE].

  44. [44]

    J.A. De Loera, J. Rambau and F. Santos, Triangulations: Structures for Algorithms and Applications, 1st edition, Springer Publishing Company (2010).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James Halverson.

Additional information

ArXiv ePrint: 1707.00655

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carifio, J., Halverson, J., Krioukov, D. et al. Machine learning in the string landscape. J. High Energ. Phys. 2017, 157 (2017). https://doi.org/10.1007/JHEP09(2017)157

Download citation

Keywords

  • D-branes
  • F-Theory
  • Superstring Vacua