Skip to main content

Advertisement

SpringerLink
Machine learning in the string landscape
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 28 September 2017

Machine learning in the string landscape

  • Jonathan Carifio1,
  • James Halverson1,
  • Dmitri Krioukov1,2,3 &
  • …
  • Brent D. Nelson1 

Journal of High Energy Physics volume 2017, Article number: 157 (2017) Cite this article

  • 836 Accesses

  • 75 Citations

  • 33 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We utilize machine learning to study the string landscape. Deep data dives and conjecture generation are proposed as useful frameworks for utilizing machine learning in the landscape, and examples of each are presented. A decision tree accurately predicts the number of weak Fano toric threefolds arising from reflexive polytopes, each of which determines a smooth F-theory compactification, and linear regression generates a previously proven conjecture for the gauge group rank in an ensemble of \( \frac{4}{3}\times 2.96\times {10}^{755} \) F-theory compactifications. Logistic regression generates a new conjecture for when E 6 arises in the large ensemble of F-theory compactifications, which is then rigorously proven. This result may be relevant for the appearance of visible sectors in the ensemble. Through conjecture generation, machine learning is useful not only for numerics, but also for rigorous results.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. W. Taylor and Y.-N. Wang, The F-theory geometry with most flux vacua, JHEP 12 (2015) 164 [arXiv:1511.03209] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. J. Halverson, C. Long and B. Sung, On Algorithmic Universality in F-theory Compactifications, arXiv:1706.02299 [INSPIRE].

  6. F. Denef and M.R. Douglas, Computational complexity of the landscape. I., Annals Phys. 322 (2007) 1096 [hep-th/0602072] [INSPIRE].

  7. M. Cvetič, I. Garcia-Etxebarria and J. Halverson, On the computation of non-perturbative effective potentials in the string theory landscape: IIB/F-theory perspective, Fortsch. Phys. 59 (2011) 243 [arXiv:1009.5386] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. F. Denef, M.R. Douglas, B. Greene and C. Zukowski, Computational complexity of the landscape II — Cosmological considerations, arXiv:1706.06430 [INSPIRE].

  9. N. Bao, R. Bousso, S. Jordan and B. Lackey, Fast optimization algorithms and the cosmological constant, arXiv:1706.08503 [INSPIRE].

  10. Y.-H. He, Deep-Learning the Landscape, arXiv:1706.02714 [INSPIRE].

  11. F. Ruehle, Evolving neural networks with genetic algorithms to study the String Landscape, JHEP 08 (2017) 038 [arXiv:1706.07024] [INSPIRE].

    Article  ADS  Google Scholar 

  12. D. Krefl and R.-K. Seong, Machine Learning of Calabi-Yau Volumes, arXiv:1706.03346 [INSPIRE].

  13. T. Mitchell, Machine Learning, McGraw-Hill (1997).

  14. C. Bishop, Pattern Recognition and Machine Learning, Springer Publishing Company (2006).

  15. M. Kreuzer and H. Skarke, Classification of reflexive polyhedra in three-dimensions, Adv. Theor. Math. Phys. 2 (1998) 847 [hep-th/9805190] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Halverson and J. Tian, Cost of seven-brane gauge symmetry in a quadrillion F-theory compactifications, Phys. Rev. D 95 (2017) 026005 [arXiv:1610.08864] [INSPIRE].

    ADS  Google Scholar 

  17. C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

  19. N. Nakayama, On Weierstrass models, in Algebraic geometry and commutative algebra. Volume II, Kinokuniya, Tokyo Japan (1988), pp. 405–431.

  20. L.B. Anderson and W. Taylor, Geometric constraints in dual F-theory and heterotic string compactifications, JHEP 08 (2014) 025 [arXiv:1405.2074] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Marsano and S. Schäfer-Nameki, Yukawas, G-flux and Spectral Covers from Resolved Calabi-Yau’s, JHEP 11 (2011) 098 [arXiv:1108.1794] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. C. Lawrie and S. Schäfer-Nameki, The Tate Form on Steroids: Resolution and Higher Codimension Fibers, JHEP 04 (2013) 061 [arXiv:1212.2949] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. H. Hayashi, C. Lawrie, D.R. Morrison and S. Schäfer-Nameki, Box Graphs and Singular Fibers, JHEP 05 (2014) 048 [arXiv:1402.2653] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A.P. Braun and S. Schäfer-Nameki, Box Graphs and Resolutions I, Nucl. Phys. B 905 (2016) 447 [arXiv:1407.3520] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A.P. Braun and S. Schäfer-Nameki, Box Graphs and Resolutions II: From Coulomb Phases to Fiber Faces, Nucl. Phys. B 905 (2016) 480 [arXiv:1511.01801] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Grassi, J. Halverson and J.L. Shaneson, Matter From Geometry Without Resolution, JHEP 10 (2013) 205 [arXiv:1306.1832] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. Grassi, J. Halverson and J.L. Shaneson, Non-Abelian Gauge Symmetry and the Higgs Mechanism in F-theory, Commun. Math. Phys. 336 (2015) 1231 [arXiv:1402.5962] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A. Grassi, J. Halverson and J.L. Shaneson, Geometry and Topology of String Junctions, arXiv:1410.6817 [INSPIRE].

  29. A. Grassi, J. Halverson, F. Ruehle and J.L. Shaneson, Dualities of Deformed \( \mathcal{N}=2 \) SCFTs from Link Monodromy on D3-brane States, arXiv:1611.01154 [INSPIRE].

  30. D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 (2012) 1072 [arXiv:1201.1943] [INSPIRE].

    ADS  MATH  Google Scholar 

  31. A. Grassi, J. Halverson, J. Shaneson and W. Taylor, Non-Higgsable QCD and the Standard Model Spectrum in F-theory, JHEP 01 (2015) 086 [arXiv:1409.8295] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. A.P. Braun and T. Watari, The Vertical, the Horizontal and the Rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications, JHEP 01 (2015) 047 [arXiv:1408.6167] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Watari, Statistics of F-theory flux vacua for particle physics, JHEP 11 (2015) 065 [arXiv:1506.08433] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Halverson, Strong Coupling in F-theory and Geometrically Non-Higgsable Seven-branes, Nucl. Phys. B 919 (2017) 267 [arXiv:1603.01639] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. J. Halverson and W. Taylor, \( {\mathrm{\mathbb{P}}}^1 \) -bundle bases and the prevalence of non-Higgsable structure in 4D F-theory models, JHEP 09 (2015) 086 [arXiv:1506.03204] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. W. Taylor and Y.-N. Wang, A Monte Carlo exploration of threefold base geometries for 4d F-theory vacua, JHEP 01 (2016) 137 [arXiv:1510.04978] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. D.R. Morrison and W. Taylor, Non-Higgsable clusters for 4D F-theory models, JHEP 05 (2015) 080 [arXiv:1412.6112] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys. 60 (2012) 1187 [arXiv:1204.0283] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. W. Taylor, On the Hodge structure of elliptically fibered Calabi-Yau threefolds, JHEP 08 (2012) 032 [arXiv:1205.0952] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].

  41. G. Martini and W. Taylor, 6D F-theory models and elliptically fibered Calabi-Yau threefolds over semi-toric base surfaces, JHEP 06 (2015) 061 [arXiv:1404.6300] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. S.B. Johnson and W. Taylor, Calabi-Yau threefolds with large h 2,1, JHEP 10 (2014) 23 [arXiv:1406.0514] [INSPIRE].

    Article  ADS  Google Scholar 

  43. W. Taylor and Y.-N. Wang, Non-toric bases for elliptic Calabi-Yau threefolds and 6D F-theory vacua, arXiv:1504.07689 [INSPIRE].

  44. J.A. De Loera, J. Rambau and F. Santos, Triangulations: Structures for Algorithms and Applications, 1st edition, Springer Publishing Company (2010).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Northeastern University, 110 Forsyth Street, Boston, MA, 02115, U.S.A.

    Jonathan Carifio, James Halverson, Dmitri Krioukov & Brent D. Nelson

  2. Department of Mathematics, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, U.S.A.

    Dmitri Krioukov

  3. Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, U.S.A.

    Dmitri Krioukov

Authors
  1. Jonathan Carifio
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. James Halverson
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Dmitri Krioukov
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Brent D. Nelson
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to James Halverson.

Additional information

ArXiv ePrint: 1707.00655

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carifio, J., Halverson, J., Krioukov, D. et al. Machine learning in the string landscape. J. High Energ. Phys. 2017, 157 (2017). https://doi.org/10.1007/JHEP09(2017)157

Download citation

  • Received: 09 July 2017

  • Accepted: 01 September 2017

  • Published: 28 September 2017

  • DOI: https://doi.org/10.1007/JHEP09(2017)157

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • D-branes
  • F-Theory
  • Superstring Vacua
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.