Asymptotic symmetries and electromagnetic memory

Abstract

Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called “memories”. Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    S. Pasterski, A. Strominger and A. Zhiboedov, New Gravitational Memories, JHEP 12 (2016) 053 [arXiv:1502.06120] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].

  5. [5]

    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].

  6. [6]

    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    Y B. Zeldovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron. 18 (1974) 17.

  9. [9]

    V.B. Braginsky and K.S. Thorne, Gravitational-wave bursts with memory and experimental prospects, Nature 327 (1987) 123.

    ADS  Article  Google Scholar 

  10. [10]

    D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett. 67 (1991) 1486 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    T. Banks, A Critique of pure string theory: Heterodox opinions of diverse dimensions, hep-th/0306074 [INSPIRE].

  12. [12]

    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [arXiv:1102.4632] [INSPIRE].

  14. [14]

    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].

  16. [16]

    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity \( \mathcal{S} \) -matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class. Quant. Grav. 30 (2013) 195009 [arXiv:1307.5098] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    S. Pasterski, Classical Interpretation of the Weinberg Soft Factor, Bowker, New Providence The Bahamas (2014) [ISBN: 978-0-9863685-8-5].

  20. [20]

    H. Georgi, G. Kestin and A. Sajjad, Towards an Effective Field Theory on the Light-Shell, JHEP 03 (2016) 137 [arXiv:1401.7667] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabrina Pasterski.

Additional information

ArXiv ePrint: 1505.00716

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pasterski, S. Asymptotic symmetries and electromagnetic memory. J. High Energ. Phys. 2017, 154 (2017). https://doi.org/10.1007/JHEP09(2017)154

Download citation

Keywords

  • Classical Theories of Gravity
  • Gauge Symmetry
  • Space-Time Symmetries