Advertisement

Journal of High Energy Physics

, 2017:154 | Cite as

Asymptotic symmetries and electromagnetic memory

  • Sabrina PasterskiEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called “memories”. Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.

Keywords

Classical Theories of Gravity Gauge Symmetry Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Pasterski, A. Strominger and A. Zhiboedov, New Gravitational Memories, JHEP 12 (2016) 053 [arXiv:1502.06120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  5. [5]
    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103 [INSPIRE].
  6. [6]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    Y B. Zeldovich and A.G. Polnarev, Radiation of gravitational waves by a cluster of superdense stars, Sov. Astron. 18 (1974) 17.Google Scholar
  9. [9]
    V.B. Braginsky and K.S. Thorne, Gravitational-wave bursts with memory and experimental prospects, Nature 327 (1987) 123.ADSCrossRefGoogle Scholar
  10. [10]
    D. Christodoulou, Nonlinear nature of gravitation and gravitational wave experiments, Phys. Rev. Lett. 67 (1991) 1486 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    T. Banks, A Critique of pure string theory: Heterodox opinions of diverse dimensions, hep-th/0306074 [INSPIRE].
  12. [12]
    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett. 105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    G. Barnich and C. Troessaert, Supertranslations call for superrotations, PoS(CNCFG2010)010 [arXiv:1102.4632] [INSPIRE].
  14. [14]
    G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].
  16. [16]
    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity \( \mathcal{S} \) -matrix, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    L. Bieri and D. Garfinkle, An electromagnetic analogue of gravitational wave memory, Class. Quant. Grav. 30 (2013) 195009 [arXiv:1307.5098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Pasterski, Classical Interpretation of the Weinberg Soft Factor, Bowker, New Providence The Bahamas (2014) [ISBN: 978-0-9863685-8-5].Google Scholar
  20. [20]
    H. Georgi, G. Kestin and A. Sajjad, Towards an Effective Field Theory on the Light-Shell, JHEP 03 (2016) 137 [arXiv:1401.7667] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.

Personalised recommendations