A preferred mass range for primordial black hole formation and black holes as dark matter revisited

Abstract

Bird et al. [1] and Sasaki et al. [2] have recently proposed the intriguing possibility that the black holes detected by LIGO could be all or part of the cosmological dark matter. This offers an alternative to WIMPs and axions, where dark matter could be comprised solely of Standard Model particles. The mass range lies within an observationally viable window and the predicted merger rate can be tested by future LIGO observations. In this paper, we argue that non-thermal histories favor production of black holes near this mass range — with heavier ones unlikely to form in the early universe and lighter black holes being diluted through late-time entropy production. We discuss how this prediction depends on the primordial power spectrum, the likelihood of black hole formation, and the underlying model parameters. We find the prediction for the preferred mass range to be rather robust assuming a blue spectral index less than two. We consider the resulting relic density in black holes, and using recent observational constraints, establish whether they could account for all of the dark matter today.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Bird et al., Did LIGO detect dark matter?, Phys. Rev. Lett. 116 (2016) 201301 [arXiv:1603.00464] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914, Phys. Rev. Lett. 117 (2016) 061101 [arXiv:1603.08338] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    Virgo and LIGO Scientific collaborations, B.P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

  4. [4]

    J. García-Bellido, A.D. Linde and D. Wands, Density perturbations and black hole formation in hybrid inflation, Phys. Rev. D 54 (1996) 6040 [astro-ph/9605094] [INSPIRE].

  5. [5]

    S. Clesse and J. García-Bellido, Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies, Phys. Rev. D 92 (2015) 023524 [arXiv:1501.07565] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    N. Orlofsky, A. Pierce and J.D. Wells, Inflationary theory and pulsar timing investigations of primordial black holes and gravitational waves, Phys. Rev. D 95 (2017) 063518 [arXiv:1612.05279] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    B. Carr, F. Kuhnel and M. Sandstad, Primordial Black Holes as Dark Matter, Phys. Rev. D 94 (2016) 083504 [arXiv:1607.06077] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    S. Clesse and J. García-Bellido, The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO, Phys. Dark Univ. 15 (2017) 142 [arXiv:1603.05234] [INSPIRE].

  9. [9]

    A. Kashlinsky, LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies, Astrophys. J. 823 (2016) L25 [arXiv:1605.04023] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    P.H. Frampton, Searching for Dark Matter Constituents with Many Solar Masses, Mod. Phys. Lett. A 31 (2016) 1650093 [arXiv:1510.00400] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    S. Blinnikov, A. Dolgov, N.K. Porayko and K. Postnov, Solving puzzles of GW150914 by primordial black holes, JCAP 11 (2016) 036 [arXiv:1611.00541] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    A. Dolgov and J. Silk, Baryon isocurvature fluctuations at small scales and baryonic dark matter, Phys. Rev. D 47 (1993) 4244 [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    A.D. Dolgov, M. Kawasaki and N. Kevlishvili, Inhomogeneous baryogenesis, cosmic antimatter and dark matter, Nucl. Phys. B 807 (2009) 229 [arXiv:0806.2986] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  14. [14]

    A. Dolgov and K. Postnov, Globular Cluster Seeding by Primordial Black Hole Population, JCAP 04 (2017) 036 [arXiv:1702.07621] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    G. Kane, K. Sinha and S. Watson, Cosmological Moduli and the Post-Inflationary Universe: A Critical Review, Int. J. Mod. Phys. D 24 (2015) 1530022 [arXiv:1502.07746] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    J. Georg, G. Şengör and S. Watson, Nonthermal WIMPs and primordial black holes, Phys. Rev. D 93 (2016) 123523 [arXiv:1603.00023] [INSPIRE].

  17. [17]

    E. Cotner and A. Kusenko, Primordial black holes from supersymmetry in the early universe, Phys. Rev. Lett. 119 (2017) 031103 [arXiv:1612.02529] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M. Yu. Khlopov, Primordial Black Holes, Res. Astron. Astrophys. 10 (2010) 495 [arXiv:0801.0116] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    nA.G. Polnarev and M.Y. Khlopov, Primordial Black Holes and the ERA of Superheavy Particle Dominance in the Early Universe, Sov. Astron. 25 (1981) 406.

  20. [20]

    M. Yu. Khlopov and A.G. Polnarev, Primordial black holes as a cosmological test of grand unification, Phys. Lett. B 97 (1980) 383 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    A.G. Polnarev and M.Y. Khlopov, The stage of superheavy particle dominance in the universe and primordial black holes, Astron. Zh. 58 (1981) 706.

    ADS  MATH  Google Scholar 

  22. [22]

    T. Harada, C.-M. Yoo, K. Kohri, K.-i. Nakao and S. Jhingan, Primordial black hole formation in the matter-dominated phase of the Universe, Astrophys. J. 833 (2016) 61 [arXiv:1609.01588] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: Baryon-Dark Matter Coincidence from Branchings in Moduli Decay, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    G. Kane, J. Shao, S. Watson and H.-B. Yu, The Baryon-Dark Matter Ratio Via Moduli Decay After Affleck-Dine Baryogenesis, JCAP 11 (2011) 012 [arXiv:1108.5178] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

  26. [26]

    B.S. Acharya, P. Kumar, K. Bobkov, G. Kane, J. Shao and S. Watson, Non-thermal Dark Matter and the Moduli Problem in String Frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A.G. Doroshkevich, Spatial structure of perturbations and origin of galactic rotation in fluctuation theory, Astrophysics 6 (1970) 320.

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    D.S. Gorbunov and V.A. Rubakov, Introduction to the theory of the early universe, World Scientific, (2011).

  29. [29]

    T. Padmanabhan, Structure formation in the universe, Cambridge University Press, (1993).

  30. [30]

    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

  31. [31]

    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

  32. [32]

    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].

  34. [34]

    B.J. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, New cosmological constraints on primordial black holes, Phys. Rev. D 81 (2010) 104019 [arXiv:0912.5297] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    S. Clark, B. Dutta, Y. Gao, L.E. Strigari and S. Watson, Planck Constraint on Relic Primordial Black Holes, Phys. Rev. D 95 (2017) 083006 [arXiv:1612.07738] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott Watson.

Additional information

ArXiv ePrint: 1703.04825

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Georg, J., Watson, S. A preferred mass range for primordial black hole formation and black holes as dark matter revisited. J. High Energ. Phys. 2017, 138 (2017). https://doi.org/10.1007/JHEP09(2017)138

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • String theory and cosmic strings