Comments on the random Thirring model

Abstract

The Thirring model with random couplings is a translationally invariant generalisation of the SYK model to 1+1 dimensions, which is tractable in the large N limit. We compute its two point function, at large distances, for any strength of the random coupling. For a given realisation, the couplings contain both irrelevant and relevant marginal operators, but statistically, in the large N limit, the random couplings are overall always marginally irrelevant, in sharp distinction to the usual Thirring model. We show the leading term to the β function in conformal perturbation theory, which is quadratic in the couplings, vanishes, while its usually subleading cubic term matches our RG flow.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  2. [2]

    A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, http://online.kitp.ucsb.edu/online/entangled15/kitaev/, University of California, Santa Barbara U.S.A., 7 April 2015.

  3. [3]

    A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/, University of California, Santa Barbara U.S.A., 27 May 2015.

  4. [4]

    J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    A.P. Reynolds and S.F. Ross, Butterflies with rotation and charge, Class. Quant. Grav. 33 (2016) 215008 [arXiv:1604.04099] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].

    Article  Google Scholar 

  13. [13]

    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, Progr. Theor. Exper. Phys. 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  14. [14]

    K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].

  18. [18]

    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    D.J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher dimensional generalizations of the SYK model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry protected topological states, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    D. Anninos, T. Anous and F. Denef, Disordered quivers and cold horizons, JHEP 12 (2016) 071 [arXiv:1603.00453] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    A. Jevicki, K. Suzuki and J. Yoon, Bi-local holography in the SYK model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. [25]

    A. Jevicki and K. Suzuki, Bi-local holography in the SYK model: perturbations, JHEP 11 (2016) 046 [arXiv:1608.07567] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  26. [26]

    S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95 (2017) 134302 [arXiv:1610.04619] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].

  28. [28]

    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [Addendum ibid. D 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].

  29. [29]

    E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].

  30. [30]

    J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    M. Blake and A. Donos, Diffusion and chaos from near AdS 2 horizons, JHEP 02 (2017) 013 [arXiv:1611.09380] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    C. Peng, M. Spradlin and A. Volovich, A supersymmetric SYK-like tensor model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    Y. Liu, M.A. Nowak and I. Zahed, Disorder in the Sachdev-Yee-Kitaev model, arXiv:1612.05233 [INSPIRE].

  36. [36]

    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum chaos and holographic tensor models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    J.M. Magan, Decoherence and microscopic diffusion at SYK, arXiv:1612.06765 [INSPIRE].

  38. [38]

    F. Ferrari, The large D limit of planar diagrams, arXiv:1701.01171 [INSPIRE].

  39. [39]

    A.M. García-García and J.J.M. Verbaarschot, Analytical spectral density of the Sachdev-Ye-Kitaev model at finite N, arXiv:1701.06593 [INSPIRE].

  40. [40]

    T. Li, J. Liu, Y. Xin and Y. Zhou, Supersymmetric SYK model and random matrix theory, JHEP 06 (2017) 111 [arXiv:1702.01738] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    R. Gurau, Quenched equals annealed at leading order in the colored SYK model, arXiv:1702.04228 [INSPIRE].

  42. [42]

    G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, arXiv:1702.04266 [INSPIRE].

  43. [43]

    M. Moshe and J. Zinn-Justin, Quantum field theory in the large-N limit: a review, Phys. Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. [44]

    J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1 [INSPIRE].

    Google Scholar 

  45. [45]

    D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D 10 (1974) 3235 [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    V. Balasubramanian, M. Berkooz, S.F. Ross and J. Simon, Black holes, entanglement and random matrices, Class. Quant. Grav. 31 (2014) 185009 [arXiv:1404.6198] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    N. Behr and A. Konechny, Renormalization and redundancy in 2d quantum field theories, JHEP 02 (2014) 001 [arXiv:1310.4185] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    Y. Imry and S.-K. Ma, Random-field instability of the ordered state of continuous symmetry, Phys. Rev. Lett. 35 (1975) 1399 [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    G. Turiaci and H. Verlinde, Towards a 2d QFT analog of the SYK model, arXiv:1701.00528 [INSPIRE].

  50. [50]

    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam The Netherlands, (2007).

  51. [51]

    J.L. Cardy, Conformal invariance and statistical mechanics, Les Houches France, (1988) [INSPIRE].

  52. [52]

    M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ninth Dover printing, tenth GPO printing ed., Dover, New York U.S.A., (1964).

  53. [53]

    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York U.S.A., (1997) [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moshe Rozali.

Additional information

ArXiv ePrint: 1702.05105

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berkooz, M., Narayan, P., Rozali, M. et al. Comments on the random Thirring model. J. High Energ. Phys. 2017, 57 (2017). https://doi.org/10.1007/JHEP09(2017)057

Download citation

Keywords

  • 1/N Expansion
  • Gauge-gravity correspondence