Skip to main content

Action growth for AdS black holes

A preprint version of the article is available at arXiv.

Abstract

Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.

References

  1. T.J. Osborne, Hamiltonian complexity, Rept. Prog. Phys. 75 (2012) 022001 [arXiv:1106.5875].

    ADS  MathSciNet  Article  Google Scholar 

  2. S. Gharibian, Y. Huang, Z. Landau and S.W. Shin, Quantum hamiltonian complexity, Found. Trends Theor. Comput. Sci. 10 (2015) 159 [arXiv:1401.3916].

    MathSciNet  Article  MATH  Google Scholar 

  3. L. Susskind, Butterflies on the Stretched Horizon, arXiv:1311.7379 [INSPIRE].

  4. L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 24 [arXiv:1403.5695] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  5. L. Susskind, Addendum to computational complexity and black hole horizons, Fortsch. Phys. 64 (2016) 44 [INSPIRE].

    Article  MATH  Google Scholar 

  6. D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

    ADS  Google Scholar 

  7. D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].

  8. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

    ADS  Article  Google Scholar 

  9. J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. L. Susskind, ER=EPR, GHZ and the consistency of quantum measurements, Fortsch. Phys. 64 (2016) 72 [arXiv:1412.8483] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  11. P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. J.L.F. Barbon and E. Rabinovici, Holographic complexity and spacetime singularities, JHEP 01 (2016) 084 [arXiv:1509.09291] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. J.L.F. Barbon and J. Martin-Garcia, Holographic Complexity Of Cold Hyperbolic Black Holes, JHEP 11 (2015) 181 [arXiv:1510.00349] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. D. Momeni, S.A.H. Mansoori and R. Myrzakulov, Holographic Complexity in Gauge/String Superconductors, Phys. Lett. B 756 (2016) 354 [arXiv:1601.03011] [INSPIRE].

    ADS  Article  Google Scholar 

  18. D. Momeni, M. Faizal, K. Myrzakulov and R. Myrzakulov, Fidelity Susceptibility as Holographic PV-Criticality, arXiv:1604.06909 [INSPIRE].

  19. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

    ADS  Google Scholar 

  20. S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000) 1047 [quant-ph/9908043].

  21. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. A. Bagchi, The BMS/GCA correspondence, arXiv:1006.3354 [INSPIRE].

  23. S. Detournay, Inner Mechanics of 3d Black Holes, Phys. Rev. Lett. 109 (2012) 031101 [arXiv:1204.6088] [INSPIRE].

    ADS  Article  Google Scholar 

  24. B. Chen, S.-x. Liu and J.-j. Zhang, Thermodynamics of Black Hole Horizons and Kerr/CFT Correspondence, JHEP 11 (2012) 017 [arXiv:1206.2015] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. B. Chen and J.-J. Zhang, RN/CFT Correspondence From Thermodynamics, JHEP 01 (2013) 155 [arXiv:1212.1959] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. C. Martinez, C. Teitelboim and J. Zanelli, Charged rotating black hole in three space-time dimensions, Phys. Rev. D 61 (2000) 104013 [hep-th/9912259] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. G. Clement, Spinning charged BTZ black holes and selfdual particle-like solutions, Phys. Lett. B 367 (1996) 70 [gr-qc/9510025] [INSPIRE].

  28. M. Cadoni, M. Melis and M.R. Setare, Microscopic entropy of the charged BTZ black hole, Class. Quant. Grav. 25 (2008) 195022 [arXiv:0710.3009] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. G.W. Gibbons, M.J. Perry and C.N. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].

    MATH  Google Scholar 

  31. M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. B. Zumino, Gravity Theories in More Than Four-Dimensions, Phys. Rept. 137 (1986) 109 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R 4 couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. C. Garraffo and G. Giribet, The Lovelock Black Holes, Mod. Phys. Lett. A 23 (2008) 1801 [arXiv:0805.3575] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. R.C. Myers, Higher Derivative Gravity, Surface Terms and String Theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. S.C. Davis, Generalized Israel junction conditions for a Gauss-Bonnet brane world, Phys. Rev. D 67 (2003) 024030 [hep-th/0208205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. D.L. Wiltshire, Spherically Symmetric Solutions of Einstein-Maxwell Theory With a Gauss-Bonnet Term, Phys. Lett. B 169 (1986) 36 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. T. Torii and H. Maeda, Spacetime structure of static solutions in Gauss-Bonnet gravity: Charged case, Phys. Rev. D 72 (2005) 064007 [hep-th/0504141] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Jiang Wang.

Additional information

ArXiv ePrint: 1606.08307

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, RG., Ruan, SM., Wang, SJ. et al. Action growth for AdS black holes. J. High Energ. Phys. 2016, 161 (2016). https://doi.org/10.1007/JHEP09(2016)161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2016)161

Keywords

  • Black Holes
  • AdS-CFT Correspondence
  • Conformal Field Theory