T.J. Osborne, Hamiltonian complexity, Rept. Prog. Phys.
75 (2012) 022001 [arXiv:1106.5875].
ADS
MathSciNet
Article
Google Scholar
S. Gharibian, Y. Huang, Z. Landau and S.W. Shin, Quantum hamiltonian complexity, Found. Trends Theor. Comput. Sci.
10 (2015) 159 [arXiv:1401.3916].
MathSciNet
Article
MATH
Google Scholar
L. Susskind, Butterflies on the Stretched Horizon, arXiv:1311.7379 [INSPIRE].
L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys.
64 (2016) 24 [arXiv:1403.5695] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
L. Susskind, Addendum to computational complexity and black hole horizons, Fortsch. Phys.
64 (2016) 44 [INSPIRE].
Article
MATH
Google Scholar
D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev.
D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
ADS
Google Scholar
D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP
06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett.
116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].
ADS
Article
Google Scholar
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.
61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Susskind, ER=EPR, GHZ and the consistency of quantum measurements, Fortsch. Phys.
64 (2016) 72 [arXiv:1412.8483] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP
09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP
05 (2013) 014 [arXiv:1303.1080] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Alishahiha, Holographic Complexity, Phys. Rev.
D 92 (2015) 126009 [arXiv:1509.06614] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.L.F. Barbon and E. Rabinovici, Holographic complexity and spacetime singularities, JHEP
01 (2016) 084 [arXiv:1509.09291] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.L.F. Barbon and J. Martin-Garcia, Holographic Complexity Of Cold Hyperbolic Black Holes, JHEP
11 (2015) 181 [arXiv:1510.00349] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.
96 (2006) 181602 [hep-th/0603001] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Momeni, S.A.H. Mansoori and R. Myrzakulov, Holographic Complexity in Gauge/String Superconductors, Phys. Lett.
B 756 (2016) 354 [arXiv:1601.03011] [INSPIRE].
ADS
Article
Google Scholar
D. Momeni, M. Faizal, K. Myrzakulov and R. Myrzakulov, Fidelity Susceptibility as Holographic PV-Criticality, arXiv:1604.06909 [INSPIRE].
A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev.
D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
ADS
Google Scholar
S. Lloyd, Ultimate physical limits to computation, Nature
406 (2000) 1047 [quant-ph/9908043].
M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.
69 (1992) 1849 [hep-th/9204099] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Bagchi, The BMS/GCA correspondence, arXiv:1006.3354 [INSPIRE].
S. Detournay, Inner Mechanics of 3d Black Holes, Phys. Rev. Lett.
109 (2012) 031101 [arXiv:1204.6088] [INSPIRE].
ADS
Article
Google Scholar
B. Chen, S.-x. Liu and J.-j. Zhang, Thermodynamics of Black Hole Horizons and Kerr/CFT Correspondence, JHEP
11 (2012) 017 [arXiv:1206.2015] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Chen and J.-J. Zhang, RN/CFT Correspondence From Thermodynamics, JHEP
01 (2013) 155 [arXiv:1212.1959] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Martinez, C. Teitelboim and J. Zanelli, Charged rotating black hole in three space-time dimensions, Phys. Rev.
D 61 (2000) 104013 [hep-th/9912259] [INSPIRE].
ADS
MathSciNet
Google Scholar
G. Clement, Spinning charged BTZ black holes and selfdual particle-like solutions, Phys. Lett.
B 367 (1996) 70 [gr-qc/9510025] [INSPIRE].
M. Cadoni, M. Melis and M.R. Setare, Microscopic entropy of the charged BTZ black hole, Class. Quant. Grav.
25 (2008) 195022 [arXiv:0710.3009] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G.W. Gibbons, M.J. Perry and C.N. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav.
22 (2005) 1503 [hep-th/0408217] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys.
10 (1968) 280 [INSPIRE].
MATH
Google Scholar
M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav.
17 (2000) 399 [hep-th/9908022] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations, Nucl. Phys.
B 277 (1986) 1 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Zumino, Gravity Theories in More Than Four-Dimensions, Phys. Rept.
137 (1986) 109 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R
4
couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys.
B 507 (1997) 571 [hep-th/9707013] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C. Garraffo and G. Giribet, The Lovelock Black Holes, Mod. Phys. Lett.
A 23 (2008) 1801 [arXiv:0805.3575] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R.C. Myers, Higher Derivative Gravity, Surface Terms and String Theory, Phys. Rev.
D 36 (1987) 392 [INSPIRE].
ADS
MathSciNet
Google Scholar
S.C. Davis, Generalized Israel junction conditions for a Gauss-Bonnet brane world, Phys. Rev.
D 67 (2003) 024030 [hep-th/0208205] [INSPIRE].
ADS
MathSciNet
Google Scholar
R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev.
D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].
ADS
MathSciNet
Google Scholar
D.L. Wiltshire, Spherically Symmetric Solutions of Einstein-Maxwell Theory With a Gauss-Bonnet Term, Phys. Lett.
B 169 (1986) 36 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Torii and H. Maeda, Spacetime structure of static solutions in Gauss-Bonnet gravity: Charged case, Phys. Rev.
D 72 (2005) 064007 [hep-th/0504141] [INSPIRE].
ADS
MathSciNet
Google Scholar
D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys.
12 (1971) 498 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar