Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Holographic Entanglement Entropy in NMG

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 September 2016
  • Volume 2016, article number 144, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Holographic Entanglement Entropy in NMG
Download PDF
  • Luca Basanisi1 &
  • Shankhadeep Chakrabortty1 
  • 370 Accesses

  • 6 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In this paper, we show that a higher derivative theory, such as New Massive Gravity, allows the existence of new entangling surfaces with non-zero extrinsic curvature. We perform the analysis for Lifshitz and Warped AdS spacetimes, revealing the role of the higher derivative contributions in the calculation of the holographic entanglement entropy. Finally, as an outcome of our holographic analysis we briefly comment on the dual boundary theory.

Article PDF

Download to read the full article text

Similar content being viewed by others

Towards the generalized gravitational entropy for spacetimes with non-Lorentz invariant duals

Article Open access 29 January 2019

Holographic entanglement entropy for the most general higher derivative gravity

Article Open access 07 August 2015

Gravitation in flat spacetime from entanglement

Article Open access 06 December 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

  2. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  3. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

    ADS  Google Scholar 

  9. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional Geometry of Squashed Cones, Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].

    ADS  Google Scholar 

  12. J. Camps, Generalized entropy and higher derivative Gravity, JHEP 03 (2014) 070 [arXiv:1310.6659] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].

  14. E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Erdmenger, M. Flory and C. Sleight, Conditions on holographic entangling surfaces in higher curvature gravity, JHEP 06 (2014) 104 [arXiv:1401.5075] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A. Ghodsi and M. Moghadassi, Holographic entanglement entropy from minimal surfaces with/without extrinsic curvature, JHEP 02 (2016) 037 [arXiv:1508.02527] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Alishahiha, A.F. Astaneh and M.R. Mohammadi Mozaffar, Holographic Entanglement Entropy for 4D Conformal Gravity, JHEP 02 (2014) 008 [arXiv:1311.4329] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. A. Bhattacharyya, M. Sharma and A. Sinha, On generalized gravitational entropy, squashed cones and holography, JHEP 01 (2014) 021 [arXiv:1308.5748] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S.M. Hosseini and Á. Véliz-Osorio, Free-kick condition for entanglement entropy in higher curvature gravity, Phys. Rev. D 92 (2015) 046010 [arXiv:1505.00826] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. S.M. Hosseini and Á. Véliz-Osorio, Entanglement and mutual information in two-dimensional nonrelativistic field theories, Phys. Rev. D 93 (2016) 026010 [arXiv:1510.03876] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. D. Anninos, J. Samani and E. Shaghoulian, Warped Entanglement Entropy, JHEP 02 (2014) 118 [arXiv:1309.2579] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Castro, D.M. Hofman and N. Iqbal, Entanglement Entropy in Warped Conformal Field Theories, JHEP 02 (2016) 033 [arXiv:1511.00707] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Ghodrati and A. Naseh, Phase transitions in BHT Massive Gravity, arXiv:1601.04403 [INSPIRE].

  24. W. Fischler and S. Kundu, Strongly Coupled Gauge Theories: High and Low Temperature Behavior of Non-local Observables, JHEP 05 (2013) 098 [arXiv:1212.2643] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M.R. Mohammadi Mozaffar, A. Mollabashi, M.M. Sheikh-Jabbari and M.H. Vahidinia, Holographic Entanglement Entropy, Field Redefinition Invariance and Higher Derivative Gravity Theories, Phys. Rev. D 94 (2016) 046002 [arXiv:1603.05713] [INSPIRE].

    ADS  Google Scholar 

  26. J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz space-times for Schrödinger holography, Phys. Lett. B 746 (2015) 318 [arXiv:1409.1519] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. T. Griffin, P. Hořava and C.M. Melby-Thompson, Lifshitz Gravity for Lifshitz Holography, Phys. Rev. Lett. 110 (2013) 081602 [arXiv:1211.4872] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D.T. Son, Toward an AdS/cold atoms correspondence: A geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. Y. Korovin, K. Skenderis and M. Taylor, Lifshitz as a deformation of Anti-de Sitter, JHEP 08 (2013) 026 [arXiv:1304.7776] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Entanglement Entropy in Lovelock Gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz Black Hole in Three Dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  34. M. Alishahiha, A.F. Astaneh and M.R. Mohammadi Mozaffar, Entanglement Entropy for Logarithmic Conformal Field Theory, Phys. Rev. D 89 (2014) 065023 [arXiv:1310.4294] [INSPIRE].

    ADS  MATH  Google Scholar 

  35. G. Compere, S. de Buyl, S. Detournay and K. Yoshida, Asymptotic symmetries of Schrödinger spacetimes, JHEP 10 (2009) 032 [arXiv:0908.1402] [INSPIRE].

    Article  ADS  Google Scholar 

  36. P. Bueno and P.F. Ramirez, Higher-curvature corrections to holographic entanglement entropy in geometries with hyperscaling violation, JHEP 12 (2014) 078 [arXiv:1408.6380] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Detournay, T. Hartman and D.M. Hofman, Warped Conformal Field Theory, Phys. Rev. D 86 (2012) 124018 [arXiv:1210.0539] [INSPIRE].

    ADS  Google Scholar 

  38. D.M. Hofman and B. Rollier, Warped Conformal Field Theory as Lower Spin Gravity, Nucl. Phys. B 897 (2015) 1 [arXiv:1411.0672] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. L. Donnay, J.J. Fernandez-Melgarejo, G. Giribet, A. Goya and E. Lavia, Conserved charges in timelike warped AdS 3 spaces, Phys. Rev. D 91 (2015) 125006 [arXiv:1504.05212] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. L. Donnay and G. Giribet, Holographic entropy of Warped-AdS 3 black holes, JHEP 06 (2015) 099 [arXiv:1504.05640] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. W. Song, Q. Wen and J. Xu, Generalized Gravitational Entropy for Warped Anti-de Sitter Space, Phys. Rev. Lett. 117 (2016) 011602 [arXiv:1601.02634] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Luca Basanisi & Shankhadeep Chakrabortty

Authors
  1. Luca Basanisi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Shankhadeep Chakrabortty
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Shankhadeep Chakrabortty.

Additional information

ArXiv ePrint: 1606.01920

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basanisi, L., Chakrabortty, S. Holographic Entanglement Entropy in NMG. J. High Energ. Phys. 2016, 144 (2016). https://doi.org/10.1007/JHEP09(2016)144

Download citation

  • Received: 21 June 2016

  • Revised: 13 September 2016

  • Accepted: 13 September 2016

  • Published: 23 September 2016

  • DOI: https://doi.org/10.1007/JHEP09(2016)144

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Models of Quantum Gravity
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature