J. Schwinger, The special canonical group, P. Natl. Acad. Sci. USA
46 (1960) 1401.
ADS
MathSciNet
Article
MATH
Google Scholar
J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys.
2 (1961) 407 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz.
47 (1964) 1515 [Sov. Phys. JETP
20 (1965) 1018] [INSPIRE].
L.P. Kadanoff and G. Baym, Quantum statistical mechanics, Benjamin, New York U.S.A. (1962).
MATH
Google Scholar
P. Danielewicz, Quantum theory of nonequilibrium processes. I, Annals Phys.
152 (1984) 239 [INSPIRE].
K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rept.
118 (1985) 1 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Calzetta and B.L. Hu, Nonequilibrium quantum fields: closed-time-path effective action, Wigner function and Boltzmann equation, Phys. Rev.
D 37 (1988) 2878 [INSPIRE].
ADS
MathSciNet
Google Scholar
E.A. Calzetta and B.L. Hu, Nonequilibrium quantum field theory, Cambridge University Press, Cambridge U.K. (2008) [INSPIRE].
J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc.
739 (2005) 3 [hep-ph/0409233] [INSPIRE].
J. Berges, Nonequilibrium quantum fields: from cold atoms to cosmology, arXiv:1503.02907 [INSPIRE].
J. Rammer, Quantum field theory of non-equilibrium states, Cambridge University Press, Cambridge U.K. (2007) [INSPIRE].
A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press, Cambridge U.K. (2011).
Book
MATH
Google Scholar
L.P. Kadanoff and P.C. Matrin, Hydrodynamic equations and correlation functions, Ann. Phys. (N.Y.)
24 (1963) 419 [Ann. Phys. (N.Y.)
281 (2000) 800].
P.C. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys.
49 (1977) 435 [INSPIRE].
ADS
Article
Google Scholar
S. Chapman and T.G. Cowling, The mathematical theory of non-uniform gases, Cambridge University Press, Cambridge U.K. (1990).
MATH
Google Scholar
G.S. Denicol, E. Molnár, H. Niemi and D.H. Rischke, Derivation of fluid dynamics from kinetic theory with the 14-moment approximation, Eur. Phys. J.
A 48 (2012) 170 [arXiv:1206.1554] [INSPIRE].
ADS
Article
Google Scholar
G.S. Denicol, H. Niemi, E. Molnár and D.H. Rischke, Derivation of transient relativistic fluid dynamics from the Boltzmann equation, Phys. Rev.
D 85 (2012) 114047 [Erratum ibid.
D 91 (2015) 039902] [arXiv:1202.4551] [INSPIRE].
A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinski, Methods of quantum field theory in statistical physics, Dover Publications (1975).
L.D. Landau and E.M. Lifshitz, Statistical physics. Part I, Course of Theoretical Physics, Butterworth-Heinemann, Oxford U.K. (1980) [INSPIRE].
T. Hayata, Y. Hidaka, T. Noumi and M. Hongo, Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method, Phys. Rev.
D 92 (2015) 065008 [arXiv:1503.04535] [INSPIRE].
ADS
Google Scholar
N. Andersson and G.L. Comer, Relativistic fluid dynamics: physics for many different scales, Living Rev. Rel.
10 (2007) 1 [gr-qc/0605010] [INSPIRE].
S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP
03 (2006) 025 [hep-th/0512260] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Nicolis and D.T. Son, Hall viscosity from effective field theory, arXiv:1103.2137 [INSPIRE].
S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev.
D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].
ADS
Google Scholar
S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, Phys. Rev.
D 89 (2014) 045016 [arXiv:1107.0732] [INSPIRE].
ADS
Google Scholar
A. Nicolis, Low-energy effective field theory for finite-temperature relativistic superfluids, arXiv:1108.2513 [INSPIRE].
J. Bhattacharya, S. Bhattacharyya and M. Rangamani, Non-dissipative hydrodynamics: effective actions versus entropy current, JHEP
02 (2013) 153 [arXiv:1211.1020] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Endlich, A. Nicolis, R.A. Porto and J. Wang, Dissipation in the effective field theory for hydrodynamics: first order effects, Phys. Rev.
D 88 (2013) 105001 [arXiv:1211.6461] [INSPIRE].
ADS
Google Scholar
S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev.
D 91 (2015) 105031 [arXiv:1305.3670] [INSPIRE].
ADS
MathSciNet
Google Scholar
N. Andersson and G.L. Comer, A covariant action principle for dissipative fluid dynamics: from formalism to fundamental physics, Class. Quant. Grav.
32 (2015) 075008 [arXiv:1306.3345] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Nicolis, R. Penco and R.A. Rosen, Relativistic fluids, superfluids, solids and supersolids from a coset construction, Phys. Rev.
D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].
ADS
Google Scholar
F.M. Haehl, R. Loganayagam and M. Rangamani, Effective actions for anomalous hydrodynamics, JHEP
03 (2014) 034 [arXiv:1312.0610] [INSPIRE].
ADS
Article
Google Scholar
G. Ballesteros, The effective theory of fluids at NLO and implications for dark energy, JCAP
03 (2015) 001 [arXiv:1410.2793] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Geracie and D.T. Son, Effective field theory for fluids: Hall viscosity from a Wess-Zumino-Witten term, JHEP
11 (2014) 004 [arXiv:1402.1146] [INSPIRE].
ADS
Article
Google Scholar
L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, Wess-Zumino terms for relativistic fluids, superfluids, solids and supersolids, Phys. Rev. Lett.
114 (2015) 091601 [arXiv:1403.6509] [INSPIRE].
ADS
Article
Google Scholar
P. Kovtun, G.D. Moore and P. Romatschke, Towards an effective action for relativistic dissipative hydrodynamics, JHEP
07 (2014) 123 [arXiv:1405.3967] [INSPIRE].
ADS
Article
Google Scholar
F.M. Haehl, R. Loganayagam and M. Rangamani, The eightfold way to dissipation, Phys. Rev. Lett.
114 (2015) 201601 [arXiv:1412.1090] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F.M. Haehl, R. Loganayagam and M. Rangamani, Adiabatic hydrodynamics: the eightfold way to dissipation, JHEP
05 (2015) 060 [arXiv:1502.00636] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Harder, P. Kovtun and A. Ritz, On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP
07 (2015) 025 [arXiv:1502.03076] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, arXiv:1511.03646 [INSPIRE].
D. Blas, S. Floerchinger, M. Garny, N. Tetradis and U.A. Wiedemann, Large scale structure from viscous dark matter, JCAP
11 (2015) 049 [arXiv:1507.06665] [INSPIRE].
ADS
Article
Google Scholar
N. Banerjee et al., Constraints on fluid dynamics from equilibrium partition functions, JHEP
09 (2012) 046 [arXiv:1203.3544] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett.
109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].
ADS
Article
Google Scholar
S. Bhattacharyya, Entropy current and equilibrium partition function in fluid dynamics, JHEP
08 (2014) 165 [arXiv:1312.0220] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Bhattacharyya, Entropy current from partition function: one example, JHEP
07 (2014) 139 [arXiv:1403.7639] [INSPIRE].
ADS
Article
Google Scholar
F. Becattini and E. Grossi, Quantum relativistic fluid at global thermodynamic equilibrium in curved spacetime, arXiv:1511.05439 [INSPIRE].
S. Floerchinger, Analytic continuation of functional renormalization group equations, JHEP
05 (2012) 021 [arXiv:1112.4374] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A.O. Caldeira and A.J. Leggett, Quantum tunneling in a dissipative system, Annals Phys.
149 (1983) 374 [INSPIRE].
ADS
Article
MATH
Google Scholar
R.D. Jordan, Effective field equations for expectation values, Phys. Rev.
D 33 (1986) 444 [INSPIRE].
ADS
MathSciNet
Google Scholar
E. Calzetta and B.L. Hu, Closed-time-path functional formalism in curved space-time: application to cosmological back-reaction problems, Phys. Rev.
D 35 (1987) 495 [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons, New York U.S.A. (1972) [INSPIRE].
W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals Phys.
118 (1979) 341 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
W.A. Hiscock and L. Lindblom, Generic instabilities in first-order dissipative relativistic fluid theories, Phys. Rev.
D 31 (1985) 725 [INSPIRE].
ADS
MathSciNet
Google Scholar
P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys.
A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar