Journal of High Energy Physics

, 2016:33 | Cite as

Hunting for dark matter coannihilation by mixing dijet resonances and missing transverse energy

  • Malte Buschmann
  • Sonia El Hedri
  • Anna Kaminska
  • Jia Liu
  • Maikel de Vries
  • Xiao-Ping Wang
  • Felix Yu
  • José ZuritaEmail author
Open Access
Regular Article - Theoretical Physics


Simplified models of the dark matter (co)annihilation mechanism predict striking new collider signatures untested by current searches. These models, which were codified in the coannihilation codex, provide the basis for a dark matter (DM) discovery program at the Large Hadron Collider (LHC) driven by the measured DM relic density. In this work, we study an exemplary model featuring s-channel DM coannihilation through a scalar diquark mediator as a representative case study of scenarios with strongly interacting coannihilation partners. We discuss the full phenomenology of the model, ranging from low energy flavor constraints, vacuum stability requirements, and precision Higgs effects to direct detection and indirect detection prospects. Moreover, motivated by the relic density calculation, we find significant portions of parameter space are compatible with current collider constraints and can be probed by future searches, including a proposed analysis for the novel signature of a dijet resonance accompanied by missing transverse energy (MET). Our results show that the 13 TeV LHC with 100 fb−1 luminosity should be sensitive to mediators as heavy as 1 TeV and dark matter in the 400-500 GeV range. The combination of searches for single and paired dijet peaks, non-resonant jets + MET excesses, and our novel resonant dijet + MET signature have strong coverage of the motivated relic density region, reflecting the tight connections between particles determining the dark matter abundance and their experimental signatures at the LHC.


Phenomenological Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  2. [2]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  3. [3]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on Light Majorana dark Matter from Colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the Frontier of Dark Matter Direct Detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C. Bartels, O. Kittel, U. Langenfeld and J. List, Model-independent WIMP Characterisation using ISR, arXiv:1202.6516 [INSPIRE].
  8. [8]
    LHC New Physics Working Group collaboration, D. Alves, Simplified Models for LHC New Physics Searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].
  9. [9]
    H. An, L.-T. Wang and H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev. D 89 (2014) 115014 [arXiv:1308.0592] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified Models for Dark Matter Interacting with Quarks, JHEP 11 (2013) 014 [Erratum ibid. 01 (2014) 162] [arXiv:1308.2679] [INSPIRE].
  11. [11]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for Dark Matter Searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    J. Abdallah et al., Simplified Models for Dark Matter and Missing Energy Searches at the LHC, arXiv:1409.2893 [INSPIRE].
  13. [13]
    M.R. Buckley, D. Feld and D. Goncalves, Scalar Simplified Models for Dark Matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining Dark Sectors at Colliders: Beyond the Effective Theory Approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Garny, A. Ibarra and S. Vogl, Signatures of Majorana dark matter with t-channel mediators, Int. J. Mod. Phys. D 24 (2015) 1530019 [arXiv:1503.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  18. [18]
    CMS collaboration, Search for new phenomena in monophoton final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 755 (2016) 102 [arXiv:1410.8812] [INSPIRE].
  19. [19]
    ATLAS collaboration, Search for new phenomena in events with a photon and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 012008 [Erratum ibid. D 92 (2015) 059903] [arXiv:1411.1559] [INSPIRE].
  20. [20]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [Erratum ibid. C 75 (2015) 408] [arXiv:1502.01518] [INSPIRE].
  21. [21]
    CMS collaboration, Search for dark matter with jets and missing transverse energy at 13 TeV, CMS-PAS-EXO-15-003 (2015).
  22. [22]
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].
  23. [23]
    M.J. Baker et al., The Coannihilation Codex, JHEP 12 (2015) 120 [arXiv:1510.03434] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  26. [26]
    J.L. Feng and J. Kumar, The WIMPless Miracle: Dark-Matter Particles without Weak-Scale Masses or Weak Interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden Charged Dark Matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N.F. Bell, Y. Cai and A.D. Medina, Co-annihilating Dark Matter: Effective Operator Analysis and Collider Phenomenology, Phys. Rev. D 89 (2014) 115001 [arXiv:1311.6169] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E. Izaguirre, G. Krnjaic and B. Shuve, Discovering Inelastic Thermal-Relic Dark Matter at Colliders, Phys. Rev. D 93 (2016) 063523 [arXiv:1508.03050] [INSPIRE].ADSGoogle Scholar
  31. [31]
    E. Eichten, I. Hinchliffe, K.D. Lane and C. Quigg, Super Collider Physics, Rev. Mod. Phys. 56 (1984) 579 [Addendum ibid. 58 (1986) 1065] [INSPIRE].
  32. [32]
    A. Gupta, R. Primulando and P. Saraswat, A New Probe of Dark Sector Dynamics at the LHC, JHEP 09 (2015) 079 [arXiv:1504.01385] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    M. Autran, K. Bauer, T. Lin and D. Whiteson, Searches for dark matter in events with a resonance and missing transverse energy, Phys. Rev. D 92 (2015) 035007 [arXiv:1504.01386] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Y. Bai, J. Bourbeau and T. Lin, Dark matter searches with a mono-Z jet, JHEP 06 (2015) 205 [arXiv:1504.01395] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].
  36. [36]
    G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.F. Giudice, B. Gripaios and R. Sundrum, Flavourful Production at Hadron Colliders, JHEP 08 (2011) 055 [arXiv:1105.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.M. Arnold, M. Pospelov, M. Trott and M.B. Wise, Scalar Representations and Minimal Flavor Violation, JHEP 01 (2010) 073 [arXiv:0911.2225] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  40. [40]
    B.A. Dobrescu, G.D. Kribs and A. Martin, Higgs Underproduction at the LHC, Phys. Rev. D 85 (2012) 074031 [arXiv:1112.2208] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Kumar, R. Vega-Morales and F. Yu, Effects from New Colored States and the Higgs Portal on Gluon Fusion and Higgs Decays, Phys. Rev. D 86 (2012) 113002 [Erratum ibid. D 87 (2013) 119903] [arXiv:1205.4244] [INSPIRE].
  42. [42]
    CMS, ATLAS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-15-002 (2015).
  43. [43]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  44. [44]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  45. [45]
    CMS collaboration, Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV, Phys. Lett. B 758 (2016) 152 [arXiv:1602.06581] [INSPIRE].
  46. [46]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-062 (2015).
  47. [47]
    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].
  48. [48]
    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  50. [50]
    A. Kaminska and M. de Vries, FeynRules Model Database: Simplified Models for Coannihilating Dark Matter,
  51. [51]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  54. [54]
    M. Backovic, K. Kong and M. McCaskey, MadDM v.1.0: Computation of Dark Matter Relic Abundance Using MadGraph5, Physics of the Dark Universe 5-6 (2014) 18 [arXiv:1308.4955] [INSPIRE].
  55. [55]
    M. Backovic, A. Martini, K. Kong, O. Mattelaer and G. Mohlabeng, MadDM: New dark matter tool in the LHC era, AIP Conf. Proc. 1743 (2016) 060001 [arXiv:1509.03683] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  59. [59]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  60. [60]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].
  61. [61]
    A. Ibarra, A. Pierce, N.R. Shah and S. Vogl, Anatomy of Coannihilation with a Scalar Top Partner, Phys. Rev. D 91 (2015) 095018 [arXiv:1501.03164] [INSPIRE].ADSGoogle Scholar
  62. [62]
    B.A. Dobrescu and F. Yu, Coupling-mass mapping of dijet peak searches, Phys. Rev. D 88 (2013) 035021 [Erratum ibid. D 90 (2014) 079901] [arXiv:1306.2629] [INSPIRE].
  63. [63]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining Dark Sectors with Monojets and Dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    CMS collaboration, Search for narrow resonances in dijet final states at \( \sqrt{s}=8 \) TeV with the novel CMS technique of data scouting, Phys. Rev. Lett. 117 (2016) 031802 [arXiv:1604.08907] [INSPIRE].
  65. [65]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  66. [66]
    UA2 collaboration, J. Alitti et al., A search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN \( \overline{p}p \) collider, Nucl. Phys. B 400 (1993) 3 [INSPIRE].
  67. [67]
    CDF collaboration, F. Abe et al., Search for new particles decaying to dijets at CDF, Phys. Rev. D 55 (1997) R5263 [hep-ex/9702004] [INSPIRE].
  68. [68]
    CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].
  69. [69]
    CMS collaboration, Search for pair-produced dijet resonances in four-jet final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 110 (2013) 141802 [arXiv:1302.0531] [INSPIRE].
  70. [70]
    CMS collaboration, Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 747 (2015) 98 [arXiv:1412.7706] [INSPIRE].
  71. [71]
    ATLAS collaboration, Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2263 [arXiv:1210.4826] [INSPIRE].
  72. [72]
  73. [73]
    W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  75. [75]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  77. [77]
    G. Salam and A. Weiler, Collider Reach,
  78. [78]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  81. [81]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    P. Nath and A.B. Spisak, Gluino Coannihilation and Observability of Gluinos at LHC RUN II, Phys. Rev. D 93 (2016) 095023 [arXiv:1603.04854] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A. Delgado, A. Martin and N. Raj, Extending the Reach of Compressed Gluinos at the LHC, arXiv:1605.06479 [INSPIRE].
  84. [84]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Avetisyan et al., Methods and Results for Standard Model Event Generation at \( \sqrt{s}=14 \) TeV, 33 TeV and 100 TeV Proton Colliders (A Snowmass Whitepaper), arXiv:1308.1636 [INSPIRE].
  86. [86]
    W. Beenakker et al., NLO+NLL squark and gluino production cross-sections with threshold-improved parton distributions, Eur. Phys. J. C 76 (2016) 53 [arXiv:1510.00375] [INSPIRE].
  87. [87]
    J.M. Campbell and R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 [arXiv:1007.3492] [INSPIRE].CrossRefGoogle Scholar
  88. [88]
    S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order α s3 in QCD, Phys. Rev. Lett. 69 (1992) 1496 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    W.T. Giele, E.W.N. Glover and D.A. Kosower, The Two-Jet Differential Cross section at \( \mathcal{O}\left({\alpha}_s^3\right) \) in Hadron Collisions, Phys. Rev. Lett. 73 (1994) 2019 [hep-ph/9403347] [INSPIRE].
  90. [90]
    ATLAS collaboration, Expected performance of the ATLAS b-tagging algorithms in Run-2, ATL-PHYS-PUB-2015-022 (2015).
  91. [91]
    J. Gaiser, Charmonium Spectroscopy From Radiative Decays of the J/ψ and ψ , Ph.D. Thesis, SLAC (1982).Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Malte Buschmann
    • 1
  • Sonia El Hedri
    • 1
  • Anna Kaminska
    • 1
  • Jia Liu
    • 1
  • Maikel de Vries
    • 1
  • Xiao-Ping Wang
    • 1
  • Felix Yu
    • 1
  • José Zurita
    • 2
    • 3
    Email author
  1. 1.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  2. 2.Institute for Theoretical Physics (ITP), Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institute for Nuclear Physics (IKP)Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations