Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
New opportunities in h → 4ℓ
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Searching for a charged Higgs boson with both H±W∓Z and H±tb couplings at the LHC

17 January 2019

Jian-Yong Cen, Jung-Hsin Chen, … Wei Wang

Benchmark planes for Higgs-to-Higgs decays in the NMSSM

05 May 2022

Ulrich Ellwanger & Cyril Hugonie

LHC search of new Higgs boson via resonant di-Higgs production with decays into 4W

19 June 2018

Jing Ren, Rui-Qing Xiao, … Weiming Yao

HL-LHC and ILC sensitivities in the hunt for heavy Higgs bosons

06 October 2020

Henning Bahl, Philip Bechtle, … Georg Weiglein

On new physics contributions to the Higgs decay to Zγ

29 October 2021

Paul Archer-Smith, Daniel Stolarski & Roberto Vega-Morales

Exotic Higgs decays in Type-II 2HDMs at the LHC and future 100 TeV hadron colliders

10 June 2019

Felix Kling, Honglei Li, … Shufang Su

Enlarging the scope of resonant di-Higgs searches: hunting for Higgs-to-Higgs cascades in 4b final states at the LHC and future colliders

03 February 2020

D. Barducci, K. Mimasu, … J. Zurita

Analysis of W± + 4γ in the 2HDM Type-I at the LHC

06 December 2021

Yan Wang, A. Arhrib, … Qi-Shu Yan

New discovery modes for a light charged Higgs boson at the LHC

08 October 2021

A. Arhrib, R. Benbrik, … Qi-Shu Yan

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 28 September 2015

New opportunities in h → 4ℓ

  • Yi Chen1,
  • Roni Harnik2 &
  • Roberto Vega-Morales3 

Journal of High Energy Physics volume 2015, Article number: 185 (2015) Cite this article

  • 352 Accesses

  • 9 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The Higgs decay h → 4ℓ has played an important role in discovering the Higgs and measuring its mass thanks to low background and excellent resolution. Current cuts in this channel have been optimized for Higgs discovery via the dominant tree level ZZ contribution arising from electroweak symmetry breaking. Going forward, one of the primary objectives of this sensitive channel will be to probe other Higgs couplings and search for new physics on top of the tree level ZZ ‘background’. Thanks to interference between these small couplings and the large tree level contribution to ZZ, the h → 4ℓ decay is uniquely capable of probing the magnitude and CP phases of the Higgs couplings to γγ and Zγ as well as, to a lesser extent, ZZ couplings arising from higher dimensional operators. With this in mind we examine how much relaxing current cuts can enhance the sensitivity while also accounting for the dominant non-Higgs continuum \( q\overline{q}\to 4\ell \) background. We find the largest enhancement in sensitivity for the hZγ couplings (≳100%) followed by hγγ (≳40%) and less so for the higher dimensional hZZ couplings (a few percent). With these enhancements, we show that couplings of order Standard Model values for hγγ may optimistically be probed by end of Run-II at the LHC while for hZγ perhaps towards the end of a high luminosity LHC. Thus an appropriately optimized h → 4ℓ analysis can complement direct decays of the Higgs to on-shell γγ and Zγ pairs giving a unique opportunity to directly access the CP properties of these couplings.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].

    Article  ADS  Google Scholar 

  4. CMS collaboration, Constraints on anomalous HVV interactions using H → 4ℓ decays, CMS-PAS-HIG-14-014 (2014).

  5. CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].

  6. C.A. Nelson, Correlation between decay planes in Higgs-boson decays into a W pair (into a Z pair), Phys. Rev. D 37 (1988) 1220 [INSPIRE].

    ADS  Google Scholar 

  7. A. Soni and R.M. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev. D 48 (1993) 5259 [hep-ph/9301225] [INSPIRE].

    ADS  Google Scholar 

  8. D. Chang, W.-Y. Keung and I. Phillips, CP odd correlation in the decay of neutral Higgs boson into ZZ, W + W − , or \( t\overline{t} \), Phys. Rev. D 48 (1993) 3225 [hep-ph/9303226] [INSPIRE].

    ADS  Google Scholar 

  9. V.D. Barger, K.-m. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons: intermediate mass range at e + e − colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].

  10. T. Arens and L.M. Sehgal, Energy spectra and energy correlations in the decay H → ZZ → μ + μ − μ + μ −, Z. Phys. C 66 (1995) 89 [hep-ph/9409396] [INSPIRE].

    ADS  Google Scholar 

  11. S.Y. Choi, D.J. Miller, M.M. Mühlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in H → ZZ → l +1 l −1 l +2 l −2 at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R.M. Godbole, D.J. Miller and M.M. Mühlleitner, Aspects of CP-violation in the HZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].

    Article  ADS  Google Scholar 

  14. V.A. Kovalchuk, Model-independent analysis of CP-violation effects in decays of the Higgs boson into a pair of the W and Z bosons, J. Exp. Theor. Phys. 107 (2008) 774 [INSPIRE].

    Article  ADS  Google Scholar 

  15. Q.-H. Cao, C.B. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].

    ADS  Google Scholar 

  16. Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].

    ADS  Google Scholar 

  17. A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].

    ADS  Google Scholar 

  18. J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP 11 (2011) 027 [arXiv:1108.2274] [INSPIRE].

    Article  ADS  Google Scholar 

  19. B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].

    ADS  Google Scholar 

  20. S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].

    ADS  Google Scholar 

  21. D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].

    ADS  Google Scholar 

  22. R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring the ‘Higgs’ boson spin and CP properties, arXiv:1208.4311 [INSPIRE].

  23. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. P. Avery et al., Precision studies of the Higgs boson decay channel H → ZZ → 4ℓ with MEKD, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].

    ADS  Google Scholar 

  25. J.M. Campbell, W.T. Giele and C. Williams, Extending the matrix element method to next-to-leading order, arXiv:1205.3434 [INSPIRE].

  26. J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].

    Article  ADS  Google Scholar 

  27. Y. Chen, N. Tran and R. Vega-Morales, Scrutinizing the Higgs signal and background in the 2e2μ golden channel, JHEP 01 (2013) 182 [arXiv:1211.1959] [INSPIRE].

    Article  ADS  Google Scholar 

  28. B. Grinstein, C.W. Murphy and D. Pirtskhalava, Searching for new physics in the three-body decays of the Higgs-like particle, JHEP 10 (2013) 077 [arXiv:1305.6938] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Menon, T. Modak, D. Sahoo, R. Sinha and H.-Y. Cheng, Inferring the nature of the boson at 125-126 GeV, Phys. Rev. D 89 (2014) 095021 [arXiv:1301.5404] [INSPIRE].

    ADS  Google Scholar 

  30. Y. Sun, X.-F. Wang and D.-N. Gao, CP mixed property of the Higgs-like particle in the decay channel h → ZZ * → 4l, Int. J. Mod. Phys. A 29 (2014) 1450086 [arXiv:1309.4171] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].

    Article  ADS  Google Scholar 

  32. I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].

    ADS  Google Scholar 

  33. M. Chen et al., The role of interference in unraveling the ZZ-couplings of the newly discovered boson at the LHC, Phys. Rev. D 89 (2014) 034002 [arXiv:1310.1397] [INSPIRE].

    ADS  Google Scholar 

  34. G. Buchalla, O. Catà and G. D’Ambrosio, Nonstandard Higgs couplings from angular distributions in h → Zℓ + ℓ −, Eur. Phys. J. C 74 (2014) 2798 [arXiv:1310.2574] [INSPIRE].

    Article  ADS  Google Scholar 

  35. Y. Chen and R. Vega-Morales, Extracting effective Higgs couplings in the golden channel, JHEP 04 (2014) 057 [arXiv:1310.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  36. Y. Chen et al., 8D likelihood effective Higgs couplings extraction framework in h → 4ℓ, JHEP 01 (2015) 125 [arXiv:1401.2077] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond geolocating: constraining higher dimensional operators in H → 4ℓ with off-shell production and more, Phys. Rev. D 91 (2015) 035011 [arXiv:1403.4951] [INSPIRE].

    ADS  Google Scholar 

  38. Y. Chen, R. Harnik and R. Vega-Morales, Probing the Higgs couplings to photons in h → 4ℓ at the LHC, Phys. Rev. Lett. 113 (2014) 191801 [arXiv:1404.1336] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Gonzalez-Alonso, A. Greljo, G. Isidori and D. Marzocca, Pseudo-observables in Higgs decays, Eur. Phys. J. C 75 (2015) 128 [arXiv:1412.6038] [INSPIRE].

    Article  ADS  Google Scholar 

  40. W. Murray, HL-LHC Higgs potential, talk given at the ECFA High Luminosity LHC Experiments Workshop, Aix-les-Bains France, 1–3 Oct 2013, http://indico.cern.ch/event/252045/session/3/contribution/8/material/slides/0.pdf.

  41. Y. Chen, A. Falkowski, I. Low and R. Vega-Morales, New observables for CP-violation in Higgs decays, Phys. Rev. D 90 (2014) 113006 [arXiv:1405.6723] [INSPIRE].

    ADS  Google Scholar 

  42. F. Bishara et al., Probing CP-violation in h → γγ with converted photons, JHEP 04 (2014) 084 [arXiv:1312.2955] [INSPIRE].

    Article  ADS  Google Scholar 

  43. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. M. Dührssen-Debling, A.T. Mendes, A. Falkowski and G. Isidori, Higgs basis: proposal for an EFT basis choice for LHC HXSWG, LHCHXSWG-INT-2015-001 (2015).

  45. A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Falkowski, Effective field theory approach to LHC Higgs data, arXiv:1505.00046 [INSPIRE].

  48. Y. Chen, A. Falkowski, R. Harnik and R. Vega-Morales, Probing effective Higgs couplings in h → 4ℓ, in preparation.

  49. M. Gonzalez-Alonso, A. Greljo, G. Isidori and D. Marzocca, Electroweak bounds on Higgs pseudo-observables and h → 4ℓ decays, Eur. Phys. J. C 75 (2015) 341 [arXiv:1504.04018] [INSPIRE].

    Article  ADS  Google Scholar 

  50. Y. Chen, D. Stolarski and R. Vega-Morales, Golden probe of the top Yukawa, Phys. Rev. D 92 (2015) 053003 [arXiv:1505.01168] [INSPIRE].

    ADS  Google Scholar 

  51. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay H → WW/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].

    ADS  Google Scholar 

  52. A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for the Higgs decays H → ZZ/WW → 4 leptons, Nucl. Phys. Proc. Suppl. 160 (2006) 131 [hep-ph/0607060] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Bordone, A. Greljo, G. Isidori, D. Marzocca and A. Pattori, Higgs pseudo observables and radiative corrections, Eur. Phys. J. C 75 (2015) 385 [arXiv:1507.02555] [INSPIRE].

    Article  ADS  Google Scholar 

  54. C. Hartmann and M. Trott, On one-loop corrections in the standard model effective field theory; the Γ(h → γγ) case, JHEP 07 (2015) 151 [arXiv:1505.02646] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and κ-framework, JHEP 07 (2015) 175 [arXiv:1505.03706] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. C. Hartmann and M. Trott, Higgs decay to two photons at one-loop in the SMEFT, arXiv:1507.03568 [INSPIRE].

  57. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].

    Article  ADS  Google Scholar 

  58. R.S. Gupta, A. Pomarol and F. Riva, BSM primary effects, Phys. Rev. D 91 (2015) 035001 [arXiv:1405.0181] [INSPIRE].

    ADS  Google Scholar 

  59. M. Trott, On the consistent use of constructed observables, JHEP 02 (2015) 046 [arXiv:1409.7605] [INSPIRE].

    Article  ADS  Google Scholar 

  60. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  61. ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [Erratum ibid. B 734 (2014) 406] [arXiv:1307.1427] [INSPIRE].

  62. D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].

    ADS  Google Scholar 

  63. ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].

  64. CMS collaboration, Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].

  65. CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].

  66. G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like boson via h → VF decays, Phys. Lett. B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE].

    Article  ADS  Google Scholar 

  67. M. Gonzalez-Alonso and G. Isidori, The h → 4l spectrum at low m 34 : standard model vs. light new physics, Phys. Lett. B 733 (2014) 359 [arXiv:1403.2648] [INSPIRE].

    Article  ADS  Google Scholar 

  68. CMS collaboration, Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states, Phys. Lett. B 726 (2013) 564 [arXiv:1210.7619] [INSPIRE].

  69. CTEQ collaboration, H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].

  70. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  72. Y. Chen et al., Technical note for 8D likelihood effective Higgs couplings extraction framework in the golden channel, arXiv:1410.4817 [INSPIRE].

  73. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  74. LHC Higgs Cross Section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Lauritsen Laboratory for High Energy Physics, California Institute of Technology, Pasadena, CA, 92115, United States

    Yi Chen

  2. Theoretical Physics Department, Fermilab, P.O. Box 500, Batavia, IL, 60510, United States

    Roni Harnik

  3. Laboratoire de Physique Théorique, CNRS-UMR 8627, Université Paris-Sud 11, F-91405, Orsay Cedex, France

    Roberto Vega-Morales

Authors
  1. Yi Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Roni Harnik
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Roberto Vega-Morales
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Roberto Vega-Morales.

Additional information

ArXiv ePrint: 1503.05855

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Harnik, R. & Vega-Morales, R. New opportunities in h → 4ℓ . J. High Energ. Phys. 2015, 185 (2015). https://doi.org/10.1007/JHEP09(2015)185

Download citation

  • Received: 04 April 2015

  • Revised: 27 August 2015

  • Accepted: 03 September 2015

  • Published: 28 September 2015

  • DOI: https://doi.org/10.1007/JHEP09(2015)185

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Beyond Standard Model
  • CP violation
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.