Advertisement

Journal of High Energy Physics

, 2015:85 | Cite as

A few more comments on secularly growing loop corrections in strong electric fields

  • E. T. AkhmedovEmail author
  • F. K. Popov
Open Access
Regular Article - Theoretical Physics

Abstract

We extend the observations of our previous paper JHEP 09 (2014) 071 [arXiv:1405.5285]. In particular, we show that the secular growth of the loop corrections to the two-point correlation functions is gauge independent: we observe the same growth in the case of the static gauge for the constant background electric field. Furthermore we solve the kinetic equation describing photon production from the background fields, which was derived in our previous paper and allows one to sum up leading secularly growing corrections from all loops. Finally, we show that in the constant electric field background the one-loop correction to the current of the produced pairs is not zero: it also grows with time and violates time translational and reversal invariance of QED on the constant electric field background.

Keywords

Nonperturbative Effects Renormalization Group Anomalies in Field and String Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E.T. Akhmedov, N. Astrakhantsev and F.K. Popov, Secularly growing loop corrections in strong electric fields, JHEP 09 (2014) 071 [arXiv:1405.5285] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E.T. Akhmedov and E.T. Musaev, Comments on QED with background electric fields, New J. Phys. 11 (2009) 103048 [arXiv:0901.0424] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    E.S. Fradkin and D.M. Gitman, Furry Picture for Quantum Electrodynamics With Pair Creating External Field, Fortsch. Phys. 29 (1981) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D.M. Gitman, E.S. Fradkin and S.M. Shvartsman, Optical Theorem In Quantum Electrodynamics With An Unstable Vacuum, Fortsch. Phys. 36 (1988) 643 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S.P. Gavrilov, D.M. Gitman and S.M. Shvartsman, Unitarity Relation In Quantum Electrodynamics With A Pair Generating External Field, Sov. Phys. J. 23 (1980) 257 [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    N.B. Narozhnyi and A.I. Nikishov, Solutions of the Klein-Gordon and Dirac Equations for a Particle in a Constant Electric Field and an Electromagnetic Wave Parallel to It, Teor. Mat. Fiz. 26 (1976) 16 [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    A.I. Nikishov, S-matrix in quantum electrodynamics with external field, Teor. Mat. Fiz. 20 (1974) 48 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  9. [9]
    A.I. Nikishov, Pair production by a constant external field, Zh. Eksp. Teor. Fiz. 57 (1969) 1210 [INSPIRE].Google Scholar
  10. [10]
    D.M. Gitman and S.P. Gavrilov, Quantum Processes In A Strong Electromagnetic Field. Creating Pairs. 3 (In Russian), Izv. Vuz. Fiz. 1 (1977) 94.Google Scholar
  11. [11]
    S.P. Gavrilov, D.M. Gitman and S.M. Shvartsman, Greens Functions In External Electric Field (in Russian), Yad. Fiz. 29 (1979) 1097 [INSPIRE].Google Scholar
  12. [12]
    Yu.Y. Volfengaut, S.P. Gavrilov, D.M. Gitman and S.M. Shvartsman, Radiative Processes in External Electromagnetic Field Generating Pairs (in Russian), Yad. Fiz. 33 (1981) 743 [INSPIRE].
  13. [13]
    S.P. Gavrilov and D.M. Gitman, Vacuum Radiational Processes In Pair Generating Fields, Sov. Phys. J. 25 (1982) 775 [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    S.P. Gavrilov and D.M. Gitman, Vacuum instability in external fields, Phys. Rev. D 53 (1996) 7162 [hep-th/9603152] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S.P. Gavrilov and D.M. Gitman, One-loop energy-momentum tensor in QED with electric-like background, Phys. Rev. D 78 (2008) 045017 [arXiv:0709.1828] [INSPIRE].ADSGoogle Scholar
  16. [16]
    T.N. Tomaras, N.C. Tsamis and R.P. Woodard, Back reaction in light cone QED, Phys. Rev. D 62 (2000) 125005 [hep-ph/0007166] [INSPIRE].ADSGoogle Scholar
  17. [17]
    F. Cooper and E. Mottola, Quantum Back Reaction in Scalar QED as an Initial Value Problem, Phys. Rev. D 40 (1989) 456 [INSPIRE].ADSGoogle Scholar
  18. [18]
    F. Cooper and E. Mottola, Initial Value Problems in Quantum Field Theory in the Large N Approximation, Phys. Rev. D 36 (1987) 3114 [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Kluger, E. Mottola and J.M. Eisenberg, The Quantum Vlasov equation and its Markov limit, Phys. Rev. D 58 (1998) 125015 [hep-ph/9803372] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. Cooper, J.M. Eisenberg, Y. Kluger, E. Mottola and B. Svetitsky, Particle production in the central rapidity region, Phys. Rev. D 48 (1993) 190 [hep-ph/9212206] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Y. Kluger, J.M. Eisenberg, B. Svetitsky, F. Cooper and E. Mottola, Fermion pair production in a strong electric field, Phys. Rev. D 45 (1992) 4659 [INSPIRE].ADSGoogle Scholar
  22. [22]
    Y. Kluger, J.M. Eisenberg, B. Svetitsky, F. Cooper and E. Mottola, Pair production in a strong electric field, Phys. Rev. Lett. 67 (1991) 2427 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    F. Gelis and N. Tanji, Formulation of the Schwinger mechanism in classical statistical field theory, Phys. Rev. D 87 (2013) 125035 [arXiv:1303.4633] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Fukushima, F. Gelis and T. Lappi, Multiparticle correlations in the Schwinger mechanism, Nucl. Phys. A 831 (2009) 184 [arXiv:0907.4793] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    F. Karbstein, Photon polarization tensor in a homogeneous magnetic or electric field, Phys. Rev. D 88 (2013) 085033 [arXiv:1308.6184] [INSPIRE].ADSGoogle Scholar
  26. [26]
    G.V. Dunne and C. Schubert, Worldline instantons and pair production in inhomogeneous fields, Phys. Rev. D 72 (2005) 105004 [hep-th/0507174] [INSPIRE].ADSGoogle Scholar
  27. [27]
    G.V. Dunne and C. Schubert, Pair creation in inhomogeneous fields from worldline instantons, AIP Conf. Proc. 857 (2006) 240 [hep-ph/0604089] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G.V. Dunne, Q.-h. Wang, H. Gies and C. Schubert, Worldline instantons. II. The fluctuation prefactor, Phys. Rev. D 73 (2006) 065028 [hep-th/0602176] [INSPIRE].
  29. [29]
    C. Schubert, QED in the worldline representation, AIP Conf. Proc. 917 (2007) 178 [hep-th/0703186] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Ruffini, L. Vitagliano and S.S. Xue, On plasma oscillations in strong electric fields, Phys. Lett. B 559 (2003) 12 [astro-ph/0302549] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.A. Grib, S.G. Mamaev and V.M. Mostepanenko, Quantum effects in strong external fields, Atomizdat, Moscow (1980).Google Scholar
  32. [32]
    A.A. Grib, S.G. Mamaev and V.M. Mostepanenko, Vacuum quantum effects in strong fields, St. Petersburg: Friedmann Laboratory, (1994).Google Scholar
  33. [33]
    L.D. Landau and E.M. Lifshitz, Physical kinetics, Vol. 10, Pergamon Press, Oxford U.K. (1975).Google Scholar
  34. [34]
    A. Kamenev, Many-body theory of non-equilibrium systems, [cond-mat/0412296].
  35. [35]
    V.P. Barashev, A.E. Shabad and S.M. Shvartsman, Polarization Operator in Quantum Electrodynamics With Pair Creating External Field, Sov. J. Nucl. Phys. 43 (1986) 617 [Yad. Fiz. 43 (1986) 964]. [INSPIRE].
  36. [36]
    P.R. Anderson and E. Mottola, Quantum vacuum instability ofeternalde Sitter space, Phys. Rev. D 89 (2014) 104039 [arXiv:1310.1963] [INSPIRE].ADSGoogle Scholar
  37. [37]
    P.R. Anderson and E. Mottola, Instability of global de Sitter space to particle creation, Phys. Rev. D 89 (2014) 104038 [arXiv:1310.0030] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D. Krotov and A.M. Polyakov, Infrared Sensitivity of Unstable Vacua, Nucl. Phys. B 849 (2011) 410 [arXiv:1012.2107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    E.T. Akhmedov and P.V. Buividovich, Interacting Field Theories in de Sitter Space are Non-Unitary, Phys. Rev. D 78 (2008) 104005 [arXiv:0808.4106] [INSPIRE].ADSGoogle Scholar
  40. [40]
    E.T. Akhmedov, P.V. Buividovich and D.A. Singleton, de Sitter space and perpetuum mobile, Phys. Atom. Nucl. 75 (2012) 525 [arXiv:0905.2742] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E.T. Akhmedov, IR divergences and kinetic equation in de Sitter space. Poincaré patch: Principal series, JHEP 01 (2012) 066 [arXiv:1110.2257] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    E.T. Akhmedov and P. Burda, Solution of the Dyson-Schwinger equation on de Sitter background in IR limit, Phys. Rev. D 86 (2012) 044031 [arXiv:1202.1202] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A.M. Polyakov, Infrared instability of the de Sitter space, arXiv:1209.4135 [INSPIRE].
  44. [44]
    E.T. Akhmedov, Physical meaning and consequences of the loop infrared divergences in global de Sitter space, Phys. Rev. D 87 (2013) 044049 [arXiv:1209.4448] [INSPIRE].ADSGoogle Scholar
  45. [45]
    E.T. Akhmedov, F.K. Popov and V.M. Slepukhin, Infrared dynamics of the massive ϕ 4 theory on de Sitter space, Phys. Rev. D 88 (2013) 024021 [arXiv:1303.1068] [INSPIRE].ADSGoogle Scholar
  46. [46]
    E.T. Akhmedov, Lecture notes on interacting quantum fields in de Sitter space, Int. J. Mod. Phys. D 23 (2014) 1430001 [arXiv:1309.2557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    E.T. Akhmedov and P. Burda, A simple way to take into account back reaction on pair creation, Phys. Lett. B 687 (2010) 267 [arXiv:0912.3435] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.International Laboratory of Representation Theory and Mathematical PhysicsNational Research University Higher School of EconomicsMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Theory divisionInstitute for Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations