Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

F-term axion monodromy inflation

  • Open access
  • Published: 30 September 2014
  • Volume 2014, article number 184, (2014)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
F-term axion monodromy inflation
Download PDF
  • Fernando Marchesano1,
  • Gary Shiu2,3 &
  • Angel M. Uranga1 
  • 665 Accesses

  • 3 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The continuous shift symmetry of axions is at the heart of several realizations of inflationary models. In particular, axion monodromy inflation aims at achieving super-Planckian field ranges for the inflaton in the context of string theory. Despite the elegant underlying principle, explicit models constructed hitherto are exceedingly complicated. We propose a new and better axion monodromy inflationary scenario, where the inflaton potential arises from an F-term. We present several scenarios, where the axion arises from the Kaluza-Klein compactification of higher dimensional gauge fields (or p-form potentials) in the presence of fluxes and/or torsion homology. The monodromy corresponds to a change in the background fluxes, and its F-term nature manifests in the existence of domain walls interpolating among flux configurations. Our scenario leads to diverse inflaton potentials, including linear large field behaviour, chaotic inflation, as well as potentials with even higher powers. They provide an elegant set of constructions with properties in the ballpark of the recent BICEP2 observational data on primordial gravitational waves.

Article PDF

Download to read the full article text

Similar content being viewed by others

The swampland conjecture and F-term axion monodromy inflation

Article Open access 28 July 2017

Fencing in the swampland: quantum gravity constraints on large field inflation

Article Open access 05 October 2015

Large field inflation from axion mixing

Article Open access 04 June 2015
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. BICEP2 collaboration, P.A.R. Ade et al., Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  Google Scholar 

  3. A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].

    Article  ADS  Google Scholar 

  4. A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The Ekpyrotic universe: Colliding branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].

    Article  ADS  Google Scholar 

  8. L. Senatore, E. Silverstein and M. Zaldarriaga, New Sources of Gravitational Waves during Inflation, JCAP 08 (2014) 016 [arXiv:1109.0542] [INSPIRE].

    Article  ADS  Google Scholar 

  9. N. Barnaby et al., Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton, Phys. Rev. D 86 (2012) 103508 [arXiv:1206.6117] [INSPIRE].

    ADS  Google Scholar 

  10. K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo - Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].

    Article  ADS  Google Scholar 

  11. D. Baumann and L. McAllister, Inflation and String Theory, arXiv:1404.2601 [INSPIRE].

  12. J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].

    Article  ADS  Google Scholar 

  14. T.W. Grimm, Axion inflation in type-II string theory, Phys. Rev. D 77 (2008) 126007 [arXiv:0710.3883] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. M. Berg, E. Pajer and S. Sjors, Dante’s Inferno, Phys. Rev. D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].

    ADS  Google Scholar 

  16. E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String Inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

    ADS  Google Scholar 

  17. L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from Axion Monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].

    ADS  Google Scholar 

  18. T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP 06 (2003) 001 [hep-th/0303252] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP 04 (2014) 155 [arXiv:1403.7507] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.P. Conlon, Brane-Antibrane Backreaction in Axion Monodromy Inflation, JCAP 01 (2012) 033 [arXiv:1110.6454] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from Axion Monodromy Inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Kaloper and L. Sorbo, A Natural Framework for Chaotic Inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].

    Article  ADS  Google Scholar 

  23. N. Kaloper, A. Lawrence and L. Sorbo, An Ignoble Approach to Large Field Inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].

    Article  ADS  Google Scholar 

  24. T.W. Grimm and J. Louis, The Effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. I. Garcia-Etxebarria, H. Hayashi, R. Savelli and G. Shiu, On quantum corrected Kahler potentials in F-theory, JHEP 03 (2013) 005 [arXiv:1212.4831] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Dai, R.G. Leigh and J. Polchinski, New Connections Between String Theories, Mod. Phys. Lett. A 4 (1989) 2073 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Cremades, L.E. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [INSPIRE].

    Article  ADS  Google Scholar 

  29. E. Witten, Theta dependence in the large-N limit of four-dimensional gauge theories, Phys. Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. S. Dubovsky, A. Lawrence and M.M. Roberts, Axion monodromy in a model of holographic gluodynamics, JHEP 02 (2012) 053 [arXiv:1105.3740] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P.G. Camara, L.E. Ibáñez and F. Marchesano, RR photons, JHEP 09 (2011) 110 [arXiv:1106.0060] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Berasaluce-Gonzalez, P.G. Camara, F. Marchesano, D. Regalado and A.M. Uranga, Non-Abelian discrete gauge symmetries in 4d string models, JHEP 09 (2012) 059 [arXiv:1206.2383] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA (1984).

    MATH  Google Scholar 

  34. R. Bott and L.W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics 82, Springer-Verlag, New York-Berlin (1982).

  35. E. Witten, Symmetry Breaking Patterns in Superstring Models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. J.D. Breit, B.A. Ovrut and G.C. Segre, E 6 Symmetry Breaking in the Superstring Theory, Phys. Lett. B 158 (1985) 33 [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Sen, Naturally Light Higgs Doublet in Supersymmetric E6 Grand Unified Theory, Phys. Rev. Lett. 55 (1985) 33 [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Gomis, F. Marchesano and D. Mateos, An Open string landscape, JHEP 11 (2005) 021 [hep-th/0506179] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux-induced SUSY-breaking soft terms on D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].

    Article  ADS  Google Scholar 

  40. P.G. Cámara, L.E. Ibáñez and I. Valenzuela, Flux-induced Soft Terms on Type IIB/F-theory Matter Curves and Hypercharge Dependent Scalar Masses, JHEP 06 (2014) 119 [arXiv:1404.0817] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Lawrence, M.B. Schulz and B. Wecht, D-branes in nongeometric backgrounds, JHEP 07 (2006) 038 [hep-th/0602025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. F. Quevedo and C.A. Trugenberger, Phases of antisymmetric tensor field theories, Nucl. Phys. B 501 (1997) 143 [hep-th/9604196] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Berasaluce-González, G. Ramirez and A.M. Uranga, Antisymmetric tensor Z p gauge symmetries in field theory and string theory, JHEP 01 (2014) 059 [arXiv:1310.5582] [INSPIRE].

    Article  Google Scholar 

  44. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  45. M. Berasaluce-Gonzalez, P.G. Camara, F. Marchesano and A.M. Uranga, Zp charged branes in flux compactifications, JHEP 04 (2013) 138 [arXiv:1211.5317] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. G. Dvali, R. Jackiw and S.-Y. Pi, Topological mass generation in four dimensions, Phys. Rev. Lett. 96 (2006) 081602 [hep-th/0511175] [INSPIRE].

    Article  ADS  Google Scholar 

  47. G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].

  48. G. Dvali, S. Folkerts and A. Franca, On How Neutrino Protects the Axion, Phys. Rev. D 89 (2014) 105025 [arXiv:1312.7273] [INSPIRE].

    ADS  Google Scholar 

  49. K. Groh, J. Louis and J. Sommerfeld, Duality and Couplings of 3-Form-Multiplets in N = 1 Supersymmetry, JHEP 05 (2013) 001 [arXiv:1212.4639] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477-478] [hep-th/9906070] [INSPIRE].

  51. L. Martucci, D-branes on general N = 1 backgrounds: Superpotentials and D-terms, JHEP 06 (2006) 033 [hep-th/0602129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. F. Marchesano, D6-branes and torsion, JHEP 05 (2006) 019 [hep-th/0603210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. H. Jockers and J. Louis, The Effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. H. Jockers and J. Louis, D-terms and F-terms from D7-brane fluxes, Nucl. Phys. B 718 (2005) 203 [hep-th/0502059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].

    Article  ADS  Google Scholar 

  56. T.W. Grimm and D.V. Lopes, The N = 1 effective actions of D-branes in Type IIA and IIB orientifolds, Nucl. Phys. B 855 (2012) 639 [arXiv:1104.2328] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Kerstan and T. Weigand, The Effective action of D6-branes in N = 1 type IIA orientifolds, JHEP 06 (2011) 105 [arXiv:1104.2329] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].

    Article  ADS  Google Scholar 

  59. L.E. Ibáñez and A.M. Uranga, String theory and particle physics: An introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).

    Google Scholar 

  60. S. Kachru, M.B. Schulz and S. Trivedi, Moduli stabilization from fluxes in a simple IIB orientifold, JHEP 10 (2003) 007 [hep-th/0201028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. N. Kaloper and R.C. Myers, The Odd story of massive supergravity, JHEP 05 (1999) 010 [hep-th/9901045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. G. Aldazabal, P.G. Camara and J.A. Rosabal, Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21 [arXiv:0811.2900] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. G.W. Moore and E. Witten, Selfduality, Ramond-Ramond fields and k-theory, JHEP 05 (2000) 032 [hep-th/9912279] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math 3 (1999) 819 [hep-th/9907189] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  66. J.M. Maldacena, G.W. Moore and N. Seiberg, D-brane instantons and k-theory charges, JHEP 11 (2001) 062 [hep-th/0108100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. J. Evslin and U. Varadarajan, K theory and S duality: Starting over from square 3, JHEP 03 (2003) 026 [hep-th/0112084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. J. Evslin, IIB soliton spectra with all fluxes activated, Nucl. Phys. B 657 (2003) 139 [hep-th/0211172] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. J. Evslin, Twisted k-theory from monodromies, JHEP 05 (2003) 030 [hep-th/0302081] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. J. Evslin, The Cascade is a MMS instanton, hep-th/0405210 [INSPIRE].

  71. A. Collinucci and J. Evslin, Twisted Homology, JHEP 03 (2007) 058 [hep-th/0611218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. J. Evslin and L. Martucci, D-brane networks in flux vacua, generalized cycles and calibrations, JHEP 07 (2007) 040 [hep-th/0703129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. J. Evslin, C. Krishnan and S. Kuperstein, Cascading quivers from decaying D-branes, JHEP 08 (2007) 020 [arXiv:0704.3484] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G - flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  76. C. Beasley and E. Witten, A Note on fluxes and superpotentials in M-theory compactifications on manifolds of G 2 holonomy, JHEP 07 (2002) 046 [hep-th/0203061] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  78. S. Gukov, Solitons, superpotentials and calibrations, Nucl. Phys. B 574 (2000) 169 [hep-th/9911011] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. T.R. Taylor and C. Vafa, R R flux on Calabi-Yau and partial supersymmetry breaking, Phys. Lett. B 474 (2000) 130 [hep-th/9912152] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. T.W. Grimm and J. Louis, The Effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys. B 718 (2005) 153 [hep-th/0412277] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. E. Silverstein, Simple de Sitter Solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  82. S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].

    ADS  Google Scholar 

  83. U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards Classical de Sitter Solutions in String Theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].

    Article  ADS  Google Scholar 

  84. U.H. Danielsson et al., de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  85. G. Gur-Ari, Brane Inflation and Moduli Stabilization on Twisted Tori, JHEP 01 (2014) 179 [arXiv:1310.6787] [INSPIRE].

    Article  Google Scholar 

  86. J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the B-field, arXiv:1304.3137 [INSPIRE].

  87. D. Chialva and U.H. Danielsson, Chain inflation and the imprint of fundamental physics in the CMBR, JCAP 03 (2009) 007 [arXiv:0809.2707] [INSPIRE].

    Article  ADS  Google Scholar 

  88. B. Shlaer, Chaotic Brane Inflation, Phys. Rev. D 88 (2013) 103503 [arXiv:1211.4024] [INSPIRE].

    ADS  Google Scholar 

  89. A. Avgoustidis, D. Cremades and F. Quevedo, Wilson line inflation, Gen. Rel. Grav. 39 (2007) 1203 [hep-th/0606031] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  90. N. Kaloper and A. Lawrence, Natural Chaotic Inflation and UV Sensitivity, Phys. Rev. D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].

    ADS  Google Scholar 

  91. W. Buchmüller, C. Wieck and M.W. Winkler, Supersymmetric Moduli Stabilization and High-Scale Inflation, arXiv:1404.2275 [INSPIRE].

  92. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  93. A. Font, L.E. Ibáñez and F. Marchesano, Coisotropic D8-branes and model-building, JHEP 09 (2006) 080 [hep-th/0607219] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Instituto de Fisica Teórica IFT-UAM/CSIC, C/ Nicolás Cabrera 13-15, Universidad Autónoma de Madrid, 28049, Madrid, Spain

    Fernando Marchesano & Angel M. Uranga

  2. Department of Physics, University of Wisconsin, Madison, WI, 53706, U.S.A.

    Gary Shiu

  3. Center for Fundamental Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Kowloon, Hong Kong

    Gary Shiu

Authors
  1. Fernando Marchesano
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gary Shiu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Angel M. Uranga
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Fernando Marchesano.

Additional information

ArXiv ePrint: 1404.3040

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchesano, F., Shiu, G. & Uranga, A.M. F-term axion monodromy inflation. J. High Energ. Phys. 2014, 184 (2014). https://doi.org/10.1007/JHEP09(2014)184

Download citation

  • Received: 08 May 2014

  • Accepted: 24 August 2014

  • Published: 30 September 2014

  • DOI: https://doi.org/10.1007/JHEP09(2014)184

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Flux compactifications
  • Cosmology of Theories beyond the SM
  • D-branes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature