Abstract
We investigate a two-level Unruh-DeWitt detector coupled to a massless scalar field or its proper time derivative in (1 + 1)-dimensional Minkowski spacetime, in a quantum state whose correlation structure across the Rindler horizon mimics the stationary aspects of a firewall that Almheiri et al. have argued to ensue in an evaporating black hole spacetime. Within first-order perturbation theory, we show that the detector’s response on falling through the horizon is sudden but finite. The difference from the Minkowski vacuum response is proportional to ω −2 ln(|ω|) for the non-derivative detector and to ln(|ω|) for the derivative-coupling detector, both in the limit of a large energy gap ω and in the limit of adiabatic switching. Adding to the quantum state high Rindler temperature excitations behind the horizon increases the detector’s response proportionally to the temperature; this situation has been suggested to model the energetic curtain proposal of Braunstein et al. We speculate that the (1 + 1)-dimensional derivative-coupling detector may be a good model for a non-derivative detector that crosses a firewall in 3 + 1 dimensions.
References
S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].
S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
L. Susskind, Black hole complementarity and the Harlow-Hayden conjecture, arXiv:1301.4505 [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].
D.N. Page, Excluding black hole firewalls with extreme cosmic censorship, JCAP 06 (2014) 051 [arXiv:1306.0562] [INSPIRE].
W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].
L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [INSPIRE].
B.S. DeWitt, Quantum gravity: the new synthesis, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979), pg. 680.
N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge U.K. (1982) [INSPIRE].
R.M. Wald, Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, Chicago U.S.A. (1994).
D.J. Raine, D.W. Sciama and P.G. Grove, Does a uniformly accelerated quantum oscillator radiate?, Proc. Roy. Soc. Lond. A 435 (1991) 205.
A. Raval, B.L. Hu and J. Anglin, Stochastic theory of accelerated detectors in a quantum field, Phys. Rev. D 53 (1996) 7003 [gr-qc/9510002] [INSPIRE].
P.C.W. Davies and A.C. Ottewill, Detection of negative energy: 4-dimensional examples, Phys. Rev. D 65 (2002) 104014 [gr-qc/0203003] [INSPIRE].
Q. Wang and W.G. Unruh, Motion of a mirror under infinitely fluctuating quantum vacuum stress, Phys. Rev. D 89 (2014) 085009 [arXiv:1312.4591] [INSPIRE].
E. Martín-Martínez and J. Louko, Particle detectors and the zero mode of a quantum field, Phys. Rev. D 90 (2014) 024015 [arXiv:1404.5621] [INSPIRE].
B.A. Juárez-Aubry and J. Louko, Onset and decay of the 1+1 Hawking-Unruh effect: what the derivative-coupling detector saw, Class. Quant. Grav., in press [arXiv:1406.2574] [INSPIRE].
Y. Décanini and A. Folacci, Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension, Phys. Rev. D 78 (2008) 044025 [gr-qc/0512118] [INSPIRE].
A. Satz, Then again, how often does the Unruh-DeWitt detector click if we switch it carefully?, Class. Quant. Grav. 24 (2007) 1719 [gr-qc/0611067] [INSPIRE].
J. Louko and A. Satz, Transition rate of the Unruh-DeWitt detector in curved spacetime, Class. Quant. Grav. 25 (2008) 055012 [arXiv:0710.5671] [INSPIRE].
L. Hodgkinson and J. Louko, How often does the Unruh-DeWitt detector click beyond four dimensions?, J. Math. Phys. 53 (2012) 082301 [arXiv:1109.4377] [INSPIRE].
E. Martín-Martínez, M. Montero and M. del Rey, Wavepacket detection with the Unruh-DeWitt model, Phys. Rev. D 87 (2013) 064038 [arXiv:1207.3248] [INSPIRE].
Á.M. Alhambra, A. Kempf and E. Martín-Martínez, Casimir forces on atoms in optical cavities, Phys. Rev. A 89 (2014) 033835 [arXiv:1311.7619].
S.L. Braunstein, private communication (2014).
C.J. Fewster, A general worldline quantum inequality, Class. Quant. Grav. 17 (2000) 1897 [gr-qc/9910060] [INSPIRE].
W. Junker and E. Schrohe, Adiabatic vacuum states on general space-time manifolds: definition, construction and physical properties, Ann. Poincaré Phys. Theor. 3 (2002) 1113 [math-ph/0109010] [INSPIRE].
L. Hörmander, The analysis of linear partial differential operators I (distribution theory and Fourier analysis), 2nd edition, Springer, Berlin Germany (1990).
L. Hörmander, Fourier integral operators. I, Acta Mathematica 127 (1971) 79, reprinted in J. Brüning and V.W. Guillemin eds., Mathematics past and present. Fourier integral operators, Springer, Berlin Germany (1994).
B. Reznik, A. Retzker and J. Silman, Violating Bell’s inequalities in vacuum, Phys. Rev. A 71 (2005) 042104 [quant-ph/0310058].
S.J. Olson and T.C. Ralph, Entanglement between the future and past in the quantum vacuum, Phys. Rev. Lett. 106 (2011) 110404 [arXiv:1003.0720] [INSPIRE].
S.J. Olson and T.C. Ralph, Extraction of timelike entanglement from the quantum vacuum, Phys. Rev. A 85 (2012) 012306 [arXiv:1101.2565] [INSPIRE].
A. Almheiri and J. Sully, An uneventful horizon in two dimensions, JHEP 02 (2014) 108 [arXiv:1307.8149] [INSPIRE].
M. Hotta, J. Matsumoto and K. Funo, Black hole firewalls require huge energy of measurement, Phys. Rev. D 89 (2014) 124023 [arXiv:1306.5057] [INSPIRE].
R. Wong, Asymptotic approximations of integrals, Society for Industrial and Applied Mathematics, Philadelphia U.S.A. (2001).
NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, release 1.0.6 (2013).
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1407.6299
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Louko, J. Unruh-DeWitt detector response across a Rindler firewall is finite. J. High Energ. Phys. 2014, 142 (2014). https://doi.org/10.1007/JHEP09(2014)142
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2014)142
Keywords
- Models of Quantum Gravity
- Black Holes
- Field Theories in Lower Dimensions