Wave equation for the Wu black hole

Abstract

Wu black hole is the most general solution of maximally supersymmetric gauged supergravity in D=5, containing U(1)3 gauge symmetry. We study the separability of the massless Klein-Gordon equation and probe its singularities for a general stationary, axisymmetric metric with orthogonal transitivity, and apply the results to the Wu black hole solution. We start with the zero azimuthal-angle eigenvalues in the scalar field Ansatz and find that the residuum of a pole in the radial equation is associated with the surface gravity calculated at this horizon. We then generalize our calculations to nonzero azimuthal eigenvalues and probing each horizon singularity, we show that the residua of the singularities for each horizon are in general associated with a specific combination of the surface gravity and the angular velocities at the associated horizon. It turns out that for the Wu black hole both the radial and angular equations are general Heun’s equations with four regular singularities.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  2. [2]

    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].

    Article  ADS  Google Scholar 

  4. [4]

    M. Cvetič and D. Youm, All the static spherically symmetric black holes of heterotic string on a six torus, Nucl. Phys. B 472 (1996) 249 [hep-th/9512127] [INSPIRE].

    Article  ADS  Google Scholar 

  5. [5]

    F. Larsen, A string model of black hole microstates, Phys. Rev. D 56 (1997) 1005 [hep-th/9702153] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    M. Cvetič and F. Larsen, General rotating black holes in string theory: grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    M. Cvetič and F. Larsen, Grey body factors for rotating black holes in four-dimensions, Nucl. Phys. B 506 (1997) 107 [hep-th/9706071] [INSPIRE].

    Article  ADS  Google Scholar 

  8. [8]

    M. Cvetič and F. Larsen, Greybody factors and charges in Kerr/CFT, JHEP 09 (2009) 088 [arXiv:0908.1136] [INSPIRE].

    Article  ADS  Google Scholar 

  9. [9]

    A. Castro and M.J. Rodriguez, Universal properties and the first law of black hole inner mechanics, Phys. Rev. D 86 (2012) 024008 [arXiv:1204.1284] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. [11]

    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. [12]

    M. Cvetič and F. Larsen, Conformal symmetry for general black holes, JHEP 02 (2012) 122 [arXiv:1106.3341] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    M. Cvetič and F. Larsen, Conformal symmetry for black holes in four dimensions, JHEP 09 (2012) 076 [arXiv:1112.4846] [INSPIRE].

    Article  ADS  Google Scholar 

  14. [14]

    M. Cvetič and G.W. Gibbons, Conformal symmetry of a black hole as a scaling limit: a black hole in an asymptotically conical box, JHEP 07 (2012) 014 [arXiv:1201.0601] [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    H.-S. Liu and H. Lü, Charged rotating AdS black hole and its thermodynamics in conformal gravity, JHEP 02 (2013) 139 [arXiv:1212.6264] [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    D.D.K. Chow and G. Compère, Black holes in \( \mathcal{N} \) = 8 supergravity from SO(4, 4) hidden symmetries, Phys. Rev. D 90 (2014) 025029 [arXiv:1404.2602] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    D.D.K. Chow and G. Compère, Seed for general rotating non-extremal black holes of \( \mathcal{N} \) = 8 supergravity, Class. Quant. Grav. 31 (2014) 022001 [arXiv:1310.1925] [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    M. Cvetič and F. Larsen, Black holes with intrinsic spin, arXiv:1406.4536 [INSPIRE].

  19. [19]

    Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].

    Article  ADS  Google Scholar 

  21. [21]

    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Non-extremal rotating black holes in five-dimensional gauged supergravity, Phys. Lett. B 644 (2007) 192 [hep-th/0606213] [INSPIRE].

    Article  ADS  Google Scholar 

  22. [22]

    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, Non-extremal charged rotating black holes in seven-dimensional gauged supergravity, Phys. Lett. B 626 (2005) 215 [hep-th/0412094] [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    T. Birkandan and M. Cvetič, Conformal invariance and near-extreme rotating AdS black holes, Phys. Rev. D 84 (2011) 044018 [arXiv:1106.4329] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    A.N. Aliev and O. Delice, Superradiant instability of five-dimensional rotating charged AdS black holes, Phys. Rev. D 79 (2009) 024013 [arXiv:0808.0280] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. [26]

    S.-Q. Wu, Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general non-extremal rotating charged black holes in minimal five-dimensional gauged supergravity, Phys. Rev. D 80 (2009) 084009 [arXiv:0906.2049] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    D.D.K. Chow, Symmetries of supergravity black holes, Class. Quant. Grav. 27 (2010) 205009 [arXiv:0811.1264] [INSPIRE].

    Article  ADS  Google Scholar 

  28. [28]

    A. Castro, J.M. Lapan, A. Maloney and M.J. Rodriguez, Black hole scattering from monodromy, Class. Quant. Grav. 30 (2013) 165005 [arXiv:1304.3781] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  29. [29]

    A. Castro, J.M. Lapan, A. Maloney and M.J. Rodriguez, Black hole monodromy and conformal field theory, Phys. Rev. D 88 (2013) 044003 [arXiv:1303.0759] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    T. Birkandan and M. Cvetič, Addentum to: conformal invariance and near-extreme rotating AdS black holes, Phys. Rev. D 90 (2014) 067504 [arXiv:1406.5208] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    M. Cvetič, H. Lü and C.N. Pope, Entropy-product rules for charged rotating black holes, Phys. Rev. D 88 (2013) 044046 [arXiv:1306.4522] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    A. Castro, N. Dehmami, G. Giribet and D. Kastor, On the universality of inner black hole mechanics and higher curvature gravity, JHEP 07 (2013) 164 [arXiv:1304.1696] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  33. [33]

    M. Cvetič, G.W. Gibbons and C.N. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  34. [34]

    S.-Q. Wu, General nonextremal rotating charged AdS black holes in five-dimensional U(1)3 gauged supergravity: a simple construction method, Phys. Lett. B 707 (2012) 286 [arXiv:1108.4159] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    C. Keeler and F. Larsen, Separability of black holes in string theory, JHEP 10 (2012) 152 [arXiv:1207.5928] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  36. [36]

    A. Ronveaux ed., Heuns differential equations, The Clarendon Press Oxford University Press, New York U.S.A. (1995).

    Google Scholar 

  37. [37]

    T. Birkandan and M. Hortacsu, Examples of Heun and Mathieu functions as solutions of wave equations in curved spaces, J. Phys. A 40 (2007) 1105 [Corrigendum ibid. A 40 (2007) 11203] [gr-qc/0607108] [INSPIRE].

  38. [38]

    M. Hortacsu, Heun functions and their uses in physics, in Proceedings of the 13th Regional Conference on Mathematical Physics, Antalya Turkey October 27-31 2010, U. Camci and I. Semiz eds., World Scientific Singapore (2013), pg. 23 [arXiv:1101.0471] [INSPIRE].

  39. [39]

    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  40. [40]

    A.N. Aliev and V.P. Frolov, Five-dimensional rotating black hole in a uniform magnetic field: the gyromagnetic ratio, Phys. Rev. D 69 (2004) 084022 [hep-th/0401095] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tolga Birkandan.

Additional information

ArXiv ePrint: 1407.8173

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Birkandan, T., Cvetič, M. Wave equation for the Wu black hole. J. High Energ. Phys. 2014, 121 (2014). https://doi.org/10.1007/JHEP09(2014)121

Download citation

Keywords

  • Black Holes in String Theory
  • Supergravity Models