Skip to main content
Log in

Hyperbolic deformation of the strip-equation and the accessory parameters for the torus

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

By applying an hyperbolic deformation to the uniformization problem for the infinite strip, we give a method for computing the accessory parameter for the torus with one source as an expansion in the modular parameter q. At O(q 0) we obtain the same equation for the accessory parameter and the same value of the semiclassical action as the one obtained from the b → 0 limit of the quantum one point function. The procedure can be carried over to the full O(q 2) or even higher order corrections although the procedure becomes somewhat complicated. Here we compute to order q 2 the correction to the weight parameter intervening in the conformal factor and it is shown that the unwanted contribution O(q) to the accessory parameter equation cancel exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. L. Hadasz, Z. Jaskolski and M. Piatek, Classical geometry from the quantum Liouville theory, Nucl. Phys. B 724 (2005) 529 [hep-th/0504204] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. L. Hadasz and Z. Jaskolski, Liouville theory and uniformization of four-punctured sphere, J. Math. Phys. 47 (2006) 082304 [hep-th/0604187] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. L. Hadasz, Z. Jaskolski and P. Suchanek, Modular bootstrap in Liouville field theory, Phys. Lett. B 685 (2010) 79 [arXiv:0911.4296] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. F. Ferrari and M. Piatek, Liouville theory, N = 2 gauge theories and accessory parameters, JHEP 05 (2012) 025 [arXiv:1202.2149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. V.A. Fateev, A. Litvinov, A. Neveu and E. Onofri, Differential equation for four-point correlation function in Liouville field theory and elliptic four-point conformal blocks, J. Phys. A 42 (2009) 304011 [arXiv:0902.1331] [INSPIRE].

    MathSciNet  Google Scholar 

  7. P. Menotti, Riemann-Hilbert treatment of Liouville theory on the torus, J. Phys. A 44 (2011) 115403 [arXiv:1010.4946] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. P. Menotti, Riemann-Hilbert treatment of Liouville theory on the torus: The general case, J. Phys. A 44 (2011) 335401 [arXiv:1104.3210] [INSPIRE].

    MathSciNet  Google Scholar 

  9. P. Menotti, Accessory parameters for Liouville theory on the torus, JHEP 12 (2012) 001 [arXiv:1207.6884] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A.-K. Kashani-Poor and J. Troost, The toroidal block and the genus expansion, JHEP 03 (2013) 133 [arXiv:1212.0722] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. V. Alba and A. Morozov, Non-conformal limit of AGT relation from the 1-point torus conformal block, JETP Lett. 90 (2009) 708 [arXiv:0911.0363] [INSPIRE].

    Article  ADS  Google Scholar 

  15. N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Hadasz, Z. Jaskolski and P. Suchanek, Proving the AGT relation for N f = 0, 1, 2 antifundamentals, JHEP 06 (2010) 046 [arXiv:1004.1841] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. L. Keen, H.E. Rauch and A.T. Vasquez, Moduli of punctured tori and the accessory parameter of Lamé equation, Trans. Am. Math. Soc. 255 (1979) 201.

    MathSciNet  MATH  Google Scholar 

  18. I. Kra, Accessory parameters for punctured spheres, Trans. Am. Math. Soc. 313 (1989) 589.

    Article  MathSciNet  MATH  Google Scholar 

  19. S.J. Smith and J.A. Hempel, The accessory parameter problem for the uniformization of the twice-punctured disc, J. London Math. Soc. 40 (1989) 269.

    Article  MathSciNet  MATH  Google Scholar 

  20. J.A. Hempel and S.J. Smith, Uniformization of the twice-punctured disk-problems of confluence, Bull. London Math. Soc. 39 (1989) 369.

    MathSciNet  MATH  Google Scholar 

  21. D.A. Hejhal, On Schottky and Koebe-like uniformizations, Acta Math. 135 (1975) 1.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.A. Hempel, On the uniformization of the n-punctured sphere, Bull. London Math. Soc. 20 (1988) 97.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.A. Hempel and S.J. Smith, Hyperbolic length of geodesics surrounding two punctures, Proc. American Math. Soc. 103 (1988) 513.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Cantini, P. Menotti and D. Seminara, Proof of Polyakov conjecture for general elliptic singularities, Phys. Lett. B 517 (2001) 203 [hep-th/0105081] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Cantini, P. Menotti and D. Seminara, Liouville theory, accessory parameters and (2 + 1)-dimensional gravity, Nucl. Phys. B 638 (2002) 351 [hep-th/0203103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063 [arXiv:0911.2353] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. Digital library of mathematical functions, NIST project, http://dlmf.nist.gov/.

  28. A. Erdelyi, Higher transcendental functions, volume II, McGraw-Hill, New York U.S.A. (1953).

    Google Scholar 

  29. N.S. Hawley and M Schiffer, Half-order differentials on Riemann surfaces, Acta Math. 115 (1966) 199.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York U.S.A. (1997).

    Book  MATH  Google Scholar 

  31. H. Dorn and H. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. J. Teschner, On the Liouville three point function, Phys. Lett. B 363 (1995) 65 [hep-th/9507109] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Mironov, S. Mironov, A. Morozov and A. Morozov, CFT exercises for the needs of AGT, arXiv:0908.2064 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Menotti.

Additional information

ArXiv ePrint: 1307.0306

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menotti, P. Hyperbolic deformation of the strip-equation and the accessory parameters for the torus. J. High Energ. Phys. 2013, 132 (2013). https://doi.org/10.1007/JHEP09(2013)132

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)132

Keywords

Navigation