Skip to main content
Log in

ABJM amplitudes and WL at finite N

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We evaluate ABJM observables at two loops, for any value of the rank N of the gauge group. We compute the color subleading contributions to the four-point scattering amplitude in ABJM at two loops. Contrary to the four dimensional case, IR divergent N-subleading contributions are proportional to leading poles in the regularization parameter. We then exploit the non-planar calculation for the amplitude to derive an expression for the two-loop Sudakov form factor at any N. In the planar limit the result coincides with the one recently obtained in literature by using Feynman diagrams and unitarity. Finally, we analyze the subleading contributions to the light-like four-cusps Wilson loop and interpret the result in terms of the non-abelian exponentiation theorem. All these perturbative results satisfy the uniform transcendentality principle, hinting at its validity in ABJM beyond the planar limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Federico Buccioni, Jean-Nicolas Lang, … Max F. Zoller

References

  1. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. O. Aharony, O. Bergman and D.L. Jafferis, Fractional M 2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Gromov and P. Vieira, The all loop AdS4/CFT3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Mauri, A. Santambrogio and S. Scoleri, The leading order dressing phase in ABJM theory, JHEP 04 (2013) 146 [arXiv:1301.7732] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Korchemsky, J. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, JHEP 12 (2011) 002 [arXiv:1007.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. J. Drummond, J. Henn, V. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N =4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N =4 super Yang-Mills theory, JHEP 05 (2009) 046[arXiv:0902.2987] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. Z. Bern, J. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. W. van Neerven, Infrared behavior of on-shell form-factors in a N = 4 supersymmetric Yang-Mills field theory, Z. Phys. C 30 (1986) 595 [INSPIRE].

    ADS  Google Scholar 

  18. L. Bork, D. Kazakov and G. Vartanov, On form factors in N = 4 SYM, JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N = 4 super Yang-Mills and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of super form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. L. Bork, D. Kazakov and G. Vartanov, On MHV form factors in superspace for \( \mathcal{N} \) = 4 SYM theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. L. Bork, On NMHV form factors in N = 4 SYM theory from generalized unitarity, JHEP 01 (2013) 049 [arXiv:1203.2596] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. Z. Gao and G. Yang, Y-system for form factors at strong coupling in AdS 5 and with multi-operator insertions in AdS 3, JHEP 06 (2013) 105 [arXiv:1303.2668] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. T. Bargheer, F. Loebbert and C. Meneghelli, Symmetries of tree-level scattering amplitudes in N = 6 superconformal Chern-Simons theory, Phys. Rev. D 82 (2010) 045016 [arXiv:1003.6120] [INSPIRE].

    ADS  Google Scholar 

  29. Y.-t. Huang and A.E. Lipstein, Amplitudes of 3D and 6D maximal superconformal theories in supertwistor space, JHEP 10 (2010) 007 [arXiv:1004.4735] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. Y.-t. Huang and A.E. Lipstein, Dual superconformal symmetry of N = 6 Chern-Simons theory, JHEP 11 (2010) 076 [arXiv:1008.0041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. D. Gang, Y.-t. Huang, E. Koh, S. Lee and A.E. Lipstein, Tree-level recursion relation and dual superconformal symmetry of the ABJM theory, JHEP 03 (2011) 116 [arXiv:1012.5032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Agarwal, N. Beisert and T. McLoughlin, Scattering in mass-deformed N ≥ 4 Chern-Simons models, JHEP 06 (2009) 045 [arXiv:0812.3367] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. W.-M. Chen and Y.-t. Huang, Dualities for loop amplitudes of N = 6 Chern-Simons matter theory, JHEP 11 (2011) 057 [arXiv:1107.2710] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M.S. Bianchi, M. Leoni, A. Mauri, S. Penati and A. Santambrogio, Scattering amplitudes/Wilson loop duality in ABJM theory, JHEP 01 (2012) 056 [arXiv:1107.3139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. I. Adam, A. Dekel and Y. Oz, On integrable backgrounds self-dual under fermionic T-duality, JHEP 04 (2009) 120 [arXiv:0902.3805] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. P.A. Grassi, D. Sorokin and L. Wulff, Simplifying superstring and D-brane actions in AdS 4 × CP 3 superbackground, JHEP 08 (2009) 060 [arXiv:0903.5407] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. I. Adam, A. Dekel and Y. Oz, On the fermionic T-duality of the AdS 4 × CP 3 σ-model, JHEP 10 (2010) 110 [arXiv:1008.0649] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. I. Bakhmatov, On AdS 4 × CP 3 T-duality, Nucl. Phys. B 847 (2011) 38 [arXiv:1011.0985] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Dekel and Y. Oz, Self-duality of Green-Schwarz σ-models, JHEP 03 (2011) 117 [arXiv:1101.0400] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. I. Bakhmatov, E. Ocolgain and H. Yavartanoo, Fermionic T-duality in the pp-wave limit, JHEP 10 (2011) 085 [arXiv:1109.1052] [INSPIRE].

    Article  ADS  Google Scholar 

  41. E. O Colgain, Self-duality of the D1-D5 near-horizon, JHEP 04 (2012) 047 [arXiv:1202.3416] [INSPIRE].

    Article  ADS  Google Scholar 

  42. N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5 × S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. T. Bargheer et al., Conformal anomaly for amplitudes in \( \mathcal{N} \) = 6 superconformal Chern-Simons theory, J. Phys. A 45 (2012) 475402 [arXiv:1204.4406] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. M.S. Bianchi, M. Leoni, A. Mauri, S. Penati and A. Santambrogio, One loop amplitudes in ABJM, JHEP 07 (2012) 029 [arXiv:1204.4407] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. J.M. Henn, J. Plefka and K. Wiegandt, Light-like polygonal Wilson loops in 3D Chern-Simons and ABJM theory, JHEP 08 (2010) 032 [Erratum ibid. 1111 (2011) 053] [arXiv:1004.0226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. M.S. Bianchi et al., From correlators to Wilson loops in Chern-Simons matter theories, JHEP 06 (2011) 118 [arXiv:1103.3675] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. S. Caron-Huot and Y.-t. Huang, The two-loop six-point amplitude in ABJM theory, JHEP 03 (2013) 075 [arXiv:1210.4226] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Brandhuber, O. Gurdogan, D. Korres, R. Mooney and G. Travaglini, Two-loop Sudakov form factor in ABJM, arXiv:1305.2421 [INSPIRE].

  50. D. Young, Form factors of chiral primary operators at two loops in ABJ(M), JHEP 06 (2013) 049 [arXiv:1305.2422] [INSPIRE].

    Article  ADS  Google Scholar 

  51. Z. Bern et al., Three-loop superfiniteness of N = 8 supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [INSPIRE].

    Article  ADS  Google Scholar 

  52. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].

    ADS  Google Scholar 

  54. S.G. Naculich, H. Nastase and H.J. Schnitzer, Subleading-color contributions to gluon-gluon scattering in N = 4 SYM theory and relations to N = 8 supergravity, JHEP 11 (2008) 018 [arXiv:0809.0376] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. S.G. Naculich, H. Nastase and H.J. Schnitzer, Linear relations between N ≥ 4 supergravity and subleading-color SYM amplitudes, JHEP 01 (2012) 041 [arXiv:1111.1675] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. S.G. Naculich, H. Nastase and H.J. Schnitzer, All-loop infrared-divergent behavior of most-subleading-color gauge-theory amplitudes, JHEP 04 (2013) 114 [arXiv:1301.2234] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. T. Bargheer, S. He and T. McLoughlin, New relations for three-dimensional supersymmetric scattering amplitudes, Phys. Rev. Lett. 108 (2012) 231601 [arXiv:1203.0562] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Y.-t. Huang and H. Johansson, Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories, Phys. Rev. Lett. 110 (2013) 171601 [arXiv:1210.2255] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  60. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. A. Gustavsson, Algebraic structures on parallel M 2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M 2-branes, JHEP 05 (2008) 105 [arXiv:0803.3803] [INSPIRE].

    Article  ADS  Google Scholar 

  64. M.S. Bianchi, M. Leoni, A. Mauri, S. Penati and A. Santambrogio, Scattering in ABJ theories, JHEP 12 (2011) 073 [arXiv:1110.0738] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. J. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. J. Frenkel and J. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Kotikov and L. Lipatov, DGLAP and BFKL evolution equations in the N = 4 supersymmetric gauge theory, hep-ph/0112346 [INSPIRE].

  68. A. Kotikov, L. Lipatov, A. Onishchenko and V. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754–756] [hep-th/0404092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. M.S. Bianchi, M. Leoni and S. Penati, An all order identity between ABJM and N = 4 SYM four-point amplitudes, JHEP 04 (2012) 045 [arXiv:1112.3649] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].

    Article  ADS  Google Scholar 

  72. E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys. B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].

    Article  ADS  Google Scholar 

  73. K. Wiegandt, Equivalence of Wilson loops in \( \mathcal{N} \) = 6 super Chern-Simons matter theory and \( \mathcal{N} \) = 4 SYM theory, Phys. Rev. D 84 (2011) 126015 [arXiv:1110.1373] [INSPIRE].

    ADS  Google Scholar 

  74. M.S. Bianchi, G. Giribet, M. Leoni and S. Penati, Light-like Wilson loops in ABJM and maximal transcendentality, JHEP 08 (2013) 111 [arXiv:1304.6085] [INSPIRE].

    Article  ADS  Google Scholar 

  75. M.S. Bianchi, G. Giribet, M. Leoni and S. Penati, The 1/2 BPS Wilson loop in ABJM theory at two loops, Phys. Rev. D 88 (2013) 026009 [arXiv:1303.6939] [INSPIRE].

    ADS  Google Scholar 

  76. M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories and AdS 4 /CF T 3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. M.S. Bianchi, S. Penati and M. Siani, Infrared stability of ABJ-like theories, JHEP 01 (2010) 080 [arXiv:0910.5200] [INSPIRE].

    Article  ADS  Google Scholar 

  78. M.S. Bianchi, S. Penati and M. Siani, Infrared stability of N = 2 Chern-Simons matter theories, JHEP 05 (2010) 106 [arXiv:0912.4282] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. V.A. Smirnov, Feynman integral calculus, Springer, Berlin Germany (2006).

    Google Scholar 

  80. V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211 (2004) 1 [INSPIRE].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco S. Bianchi.

Additional information

ArXiv ePrint: 1306.3243

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, M.S., Leoni, M., Leoni, M. et al. ABJM amplitudes and WL at finite N . J. High Energ. Phys. 2013, 114 (2013). https://doi.org/10.1007/JHEP09(2013)114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)114

Keywords

Navigation