Electroweak cogenesis

Abstract

We propose a simple renormalizable model of baryogenesis and asymmetric dark matter generation at the electroweak phase transition. Our setup utilizes the two Higgs doublet model plus two complex gauge singlets, the lighter of which is stable dark matter. The dark matter is charged under a global symmetry that is broken in the early universe but restored during the electroweak phase transition. Because the ratio of baryon and dark matter asymmetries is controlled by model parameters, the dark matter need not be light. Thus, new force carriers are unnecessary and the symmetric dark matter abundance can be eliminated via Higgs portal interactions alone. Our model places a rough upper bound on the dark matter mass, and has implications for direct detection experiments and particle colliders.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    M.S. Turner and B.J. Carr, Why should baryons and exotic relic particles have comparable densities?, Mod. Phys. Lett. A 2 (1987) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991)3062 [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    H. Davoudiasl and R.N. Mohapatra, On relating the genesis of cosmic baryons and dark matter, New J. Phys. 14 (2012) 095011 [arXiv:1203.1247] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013)1330028 [arXiv:1305.4939] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  10. [10]

    H. An, S.-L. Chen, R.N. Mohapatra and Y. Zhang, Leptogenesis as a common origin for matter and dark matter, JHEP 03 (2010) 124 [arXiv:0911.4463] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    H. An, S.-L. Chen, R.N. Mohapatra, S. Nussinov and Y. Zhang, Energy dependence of direct detection cross section for asymmetric mirror dark matter, Phys. Rev. D 82 (2010) 023533 [arXiv:1004.3296] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    M. Ibe, S. Matsumoto and T.T. Yanagida, The GeV-scale dark matter with B-L asymmetry, Phys. Lett. B 708 (2012) 112 [arXiv:1110.5452] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    M.R. Buckley and L. Randall, Xogenesis, JHEP 09 (2011) 009 [arXiv:1009.0270] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric dark matter from leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    T.A. Chowdhury, M. Nemevšek, G. Senjanović and Y. Zhang, Dark matter as the trigger of strong electroweak phase transition, JCAP 02 (2012) 029 [arXiv:1110.5334] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    C. Cheung and K. Ishiwata, Baryogenesis with higher dimension operators, arXiv:1304.0468 [INSPIRE].

  17. [17]

    M.R. Buckley and S. Profumo, Regenerating a symmetry in asymmetric dark matter, Phys. Rev. Lett. 108 (2012) 011301 [arXiv:1109.2164] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M. Cirelli, P. Panci, G. Servant and G. Zaharijas, Consequences of DM/antiDM oscillations for asymmetric WIMP dark matter, JCAP 03 (2012) 015 [arXiv:1110.3809] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    S. Tulin, H.-B. Yu and K.M. Zurek, Oscillating asymmetric dark matter, JCAP 05 (2012) 013 [arXiv:1202.0283] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    K. Blum, A. Efrati, Y. Grossman, Y. Nir and A. Riotto, Asymmetric higgsino dark matter, Phys. Rev. Lett. 109 (2012) 051302 [arXiv:1201.2699] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    G. Servant and S. Tulin, Higgsogenesis, arXiv:1304.3464 [INSPIRE].

  22. [22]

    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    L.D. McLerran, M.E. Shaposhnikov, N. Turok and M.B. Voloshin, Why the baryon asymmetry of the universe is approximately 10−10, Phys. Lett. B 256 (1991) 451 [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    N. Turok and J. Zadrozny, Electroweak baryogenesis in the two doublet model, Nucl. Phys. B 358 (1991)471 [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    L. Fromme, S.J. Huber and M. Seniuch, Baryogenesis in the two-Higgs doublet model, JHEP 11 (2006) 038 [hep-ph/0605242] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000)1 [INSPIRE].

    Google Scholar 

  28. [28]

    J. Shelton and K.M. Zurek, Darkogenesis: a baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    Y. Cui, L. Randall and B. Shuve, Emergent dark matter, baryon and lepton numbers, JHEP 08 (2011) 073 [arXiv:1106.4834] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    J.M. Cline and P.-A. Lemieux, Electroweak phase transition in two Higgs doublet models, Phys. Rev. D 55 (1997) 3873 [hep-ph/9609240] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    M. Quirós, Finite temperature field theory and phase transitions, hep-ph/9901312 [INSPIRE].

  32. [32]

    G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis, Phys. Rev. D 45 (1992) 2685 [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    P.B. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. D 50 (1994) 6662] [hep-ph/9212235] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. D 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    G. Dorsch, S. Huber and J. No, A strong electroweak phase transition in the 2HDM after LHC8, arXiv:1305.6610 [INSPIRE].

  39. [39]

    S. Weinberg, Gauge and global symmetries at high temperature, Phys. Rev. D 9 (1974) 3357 [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    R.N. Mohapatra and G. Senjanović, Broken symmetries at high temperature, Phys. Rev. D 20 (1979) 3390 [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    R.N. Mohapatra and G. Senjanović, High temperature behavior of gauge theories, Phys. Lett. B 89 (1979) 57 [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex scalar singlet dark matter: vacuum stability and phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the electroweak vacuum by a scalar threshold effect, JHEP 06 (2012) 031 [arXiv:1203.0237] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    C. Cheung, M. Papucci and K.M. Zurek, Higgs and dark matter hints of an oasis in the desert, JHEP 07 (2012) 105 [arXiv:1203.5106] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].

  46. [46]

    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    M. Joyce, T. Prokopec and N. Turok, Why hypercharge doesnt make baryons, hep-ph/9401351 [INSPIRE].

  48. [48]

    A.G. Cohen, D. Kaplan and A. Nelson, Diffusion enhances spontaneous electroweak baryogenesis, Phys. Lett. B 336 (1994) 41 [hep-ph/9406345] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    A.G. Cohen, D. Kaplan and A. Nelson, Spontaneous baryogenesis at the weak phase transition, Phys. Lett. B 263 (1991) 86 [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    A.G. Cohen, D. Kaplan and A. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    G. Giudice and M.E. Shaposhnikov, Strong sphalerons and electroweak baryogenesis, Phys. Lett. B 326 (1994) 118 [hep-ph/9311367] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    M. Dine, P. Huet, J. Singleton, Robert L. and L. Susskind, Creating the baryon asymmetry at the electroweak phase transition, Phys. Lett. B 257 (1991) 351 [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  54. [54]

    I. Affleck and M. Dine, A new mechanism for baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  55. [55]

    M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  56. [56]

    K. Enqvist and A. Mazumdar, Cosmological consequences of MSSM flat directions, Phys. Rept. 380 (2003) 99 [hep-ph/0209244] [INSPIRE].

    MathSciNet  ADS  Article  MATH  Google Scholar 

  57. [57]

    C. Cheung and K.M. Zurek, Affleck-dine cogenesis, Phys. Rev. D 84 (2011) 035007 [arXiv:1105.4612] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the standard model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    E. Accomando et al., Workshop on CP studies and non-standard Higgs physics, hep-ph/0608079 [INSPIRE].

  61. [61]

    A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the two-Higgs-doublet-model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    J. Shu and Y. Zhang, Impact of a CP-violating Higgs: from LHC to baryogenesis, arXiv:1304.0773 [INSPIRE].

  63. [63]

    Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, 2HDM portal dark matter: LHC data and the Fermi-LAT 135 GeV line, Phys. Rev. D 88 (2013) 015008 [arXiv:1212.5604] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    J. Giedt, A.W. Thomas and R.D. Young, Dark matter, the CMSSM and lattice QCD, Phys. Rev. Lett. 103 (2009) 201802 [arXiv:0907.4177] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, arXiv:1206.6288 [INSPIRE].

  66. [66]

    ATLAS collaboration, Search for Higgs bosons in two-Higgs-doublet models in the HWWeνμν channel with the ATLAS detector, ATLAS-CONF-2013-027(2013).

  67. [67]

    N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].

  68. [68]

    C. Cheung, S.D. McDermott and K.M. Zurek, Inspecting the Higgs for new weakly interacting particles, JHEP 04 (2013) 074 [arXiv:1302.0314] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    L. Basso et al., The CP-violating type-II 2HDM and Charged Higgs boson benchmarks, PoS(Corfu2012)029 [arXiv:1305.3219] [INSPIRE].

  70. [70]

    M. Misiak et al., Estimate of \( B\left( {\overline{B}\to {X_s}\gamma } \right) \) at \( O\left( {\alpha_s^2} \right) \) , Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton signals in the inert doublet model, Phys. Rev. D 81 (2010) 035003 [arXiv:0909.3094] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    A. Riotto, The More relaxed supersymmetric electroweak baryogenesis, Phys. Rev. D 58 (1998) 095009 [hep-ph/9803357] [INSPIRE].

    ADS  Google Scholar 

  73. [73]

    C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    P. Huet and A.E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev. D 53 (1996) 4578 [hep-ph/9506477] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    C. Cheung, A. Dahlen and G. Elor, Bubble baryogenesis, JHEP 09 (2012) 073 [arXiv:1205.3501] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yue Zhang.

Additional information

ArXiv ePrint: 1306.4321

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheung, C., Zhang, Y. Electroweak cogenesis. J. High Energ. Phys. 2013, 2 (2013). https://doi.org/10.1007/JHEP09(2013)002

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • CP violation
  • Global Symmetries