Skip to main content
Log in

Supersymmetric deformations of maximally supersymmetric gauge theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study supersymmetric and super Poincaré invariant deformations of tendimensional super Yang-Mills theory and of its dimensional reductions. We describe all infinitesimal super Poincaré invariant deformations of equations of motion of ten-dimensional super Yang-Mills theory and deformations of the reduction to a point. We also discuss how these infinitesimals can be extended to formal deformations. Our methods are based on homological algebra, in particular, on the theory of L-infinity and A-infinity algebras. The exposition of this theory as well as of some basic facts about Lie algebra homology and Hochschild homology is given in appendices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Abdalla, M. Forger and M. Jacques, Higher conservation laws for ten-dimensional supersymmetric Yang-Mills theory, Nucl. Phys. B 308 (1988) 198.

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Bergshoeff, A. Bilal, M. de Roo and A. Sevrin, Supersymmetric non-Abelian Born-Infeld revisited, JHEP 07 (2001) 029 [hep-th/0105274] [INSPIRE].

    Article  ADS  Google Scholar 

  4. N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09 (2001) 016 [hep-th/0105050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Berkovits, Explaining the pure spinor formalism for the superstring, JHEP 01 (2008) 065 [arXiv:0712.0324] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. N. Berkovits and P. Howe, The cohomology of superspace, pure spinors and invariant integrals, JHEP 06 (2008) 046 [arXiv:0803.3024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. N. Berkovits and N. Nekrasov, The character of pure spinors, Lett. Math. Phys. 74 (2005) 75 [hep-th/0503075] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R. Bott, Homogeneous vector bundles, Ann. Math. 66 (1957) 203.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Burghelea, Z. Fiedorowicz and W. Gajda, Adams operations in hochschild and cyclic homology of de Rham algebra and free loop spaces, K-Theory 4 (1991) 269.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton U.S.A. (1999).

    MATH  Google Scholar 

  11. M. Cederwall and A. Karlsson, Pure spinor superfields and Born-Infeld theory, JHEP 11 (2011) 134 [arXiv:1109.0809] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Cederwall, B.E. Nilsson and D. Tsimpis, D = 10 super Yang-Mills at O′2), JHEP 07 (2001) 042 [hep-th/0104236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Cederwall, B.E. Nilsson and D. Tsimpis, The structure of maximally supersymmetric Yang-Mills theory: Constraining higher order corrections, JHEP 06 (2001) 034 [hep-th/0102009] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Cederwall, B.E. Nilsson and D. Tsimpis, Spinorial cohomology and maximally supersymmetric theories, JHEP 02 (2002) 009 [hep-th/0110069] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Cederwall, B.E.W. Nilsson and D. Tsimpis, Spinorial cohomology of abelian D = 10 super Yang-Mills at O′3), JHEP 11 (2002) 023 [hep-th/0205165] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. C. Chevalley, The algebraic theory of spinors and Clifford algebras, volume 2 of collected works, Springer, U.S.A. (1997).

    Google Scholar 

  17. A. Collinucci, M. De Roo and M. Eenink, Supersymmetric Yang-Mills theory at order α′3, JHEP 06 (2002) 024 [hep-th/0205150] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Connes, Noncommutative geometry, Academic Press, San Diego U.S.A. (1994).

    MATH  Google Scholar 

  19. A. Connes and M. Dubois-Violette, Yang-mills and some related algebras, in Rigorous quantum field theory, Progress in Mathematics volume 251, Birkhäuser, Germany (2007).

    Google Scholar 

  20. A. Corti and M. Reid, Weighted grassmannians, in Algebraic geometry, Walter de Gruyter and Co., Berlin Germany (2002).

    Google Scholar 

  21. P. Deligne, Notes on spinors, in Quantum fields and strings. A course for mathematicians, volume 1, P. Etingof et al. eds., American Mathematical Society, U.S.A. (1999).

    Google Scholar 

  22. D.Grayson and M. Stillman, Macaulay2, http://www.math.uiuc.edu/Macaulay2/.

  23. B.L. Feigin and B.L. Tsygan, Cyclic homology of algebras with quadratic relations, universal enveloping algebras and group algebras, in K-theory, arithmetic and geometry (Moscow, 1984), Lecture Notes in Mathematics volume 1289, Springer, U.S.A. (1987).

    Google Scholar 

  24. P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley & Sons Inc., U.S.A. (1978).

    MATH  Google Scholar 

  25. M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton U.S.A. (1992).

    MATH  Google Scholar 

  26. P.S. Howe, Pure spinors, function superspaces and supergravity theories in ten-dimensions and eleven-dimensions, Phys. Lett. B 273 (1991) 90 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. T.V. Kadeishvili, The functor D for a category of A -algebras (in Russian), Soobshch. Akad. Nauk Gruzin. SSR 125 (1987) 273.

  28. B. Keller, Derived invariance of higher structures on the Hochschild complex, preprint available at http://people.math.jussieu.fr/keller/publ/dih.pdf.

  29. B. Keller, Invariance and localization for cyclic homology of dg algebras, J. Pure Appl. Algebra 123 (1998) 223.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Kontsevich, private communication.

  31. T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Lakshmibai and K.N. Raghavan. Standard monomial theory. Invariant theoretic approach, Encyclopaedia of Mathematical Sciences volume 137, Springer, U.S.A. (2008).

    Google Scholar 

  33. S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Germany (1963).

  34. J.-L. Loday, Cyclic homology, Springer, U.S.A. (1998).

    Book  MATH  Google Scholar 

  35. M. Movshev, Cohomology of Yang-Mills algebras, J. Noncommut. Geom. 2 (2008) 353.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Movshev and A. Schwarz, On maximally supersymmetric Yang-Mills theories, Nucl. Phys. B 681 (2004) 324 [hep-th/0311132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Movshev and A. Schwarz, Algebraic structure of Yang-Mills theory, in The unity of mathematics, Progress in Mathematics volume 244, Birkhäuser, Germany (2006).

    Google Scholar 

  38. M. Movshev, Deformation of maximally supersymmetric Yang-Mills theory in dimensions 10. An Algebraic approach, hep-th/0601010 [INSPIRE].

  39. M.V. Movshev, Straightened law for quantum isotropic Grassmannian ogr +(5, 10), arXiv:1110.5868.

  40. A. Nijenhuis and R.W. Richardson Jr., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966) 1.

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Penkava and A.Schwarz, A algebras and the cohomology of moduli spaces in Lie groups and Lie algebras: E.B. Dynkins Seminar, S.G. Gindikin and E.B. Vinberg eds., American Mathematical Society, U.S.A. (1995).

  42. A. Polishchuk and L. Positselski, Quadratic algebras, American Mathematical Society, U.S.A. (2005).

    MATH  Google Scholar 

  43. S. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970) 39.

    Article  MathSciNet  MATH  Google Scholar 

  44. A.S. Schwarz, Semiclassical approximation in Batalin-Vilkovisky formalism, Commun. Math. Phys. 158 (1993) 373 [hep-th/9210115] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J Stasheff, The (secret?) homological algebra of the Batalin-Vilkovisky approach, in Secondary calculus and cohomological physics (Moscow, 1997), M. Henneaux et al. eds., American Mathematical Society, U.S.A. (1998).

  46. E.B Vinberg and A.L. Onishchik, Seminar on Lie groups and algebraic groups, Springer, U.S.A. (1990).

    Google Scholar 

  47. C. Weibel, An introduction to homological algebra, Cambridge University Press, Cambridge U.K. (1995).

    MATH  Google Scholar 

  48. B. Zumino, Cohomology of gauge groups: cocycles and Schwinger terms, Nucl. Phys. B 253 (1985) 477 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Movshev.

Additional information

ArXiv ePrint: 0910.0620

The work of both authors was partially supported by NSF grant No. DMS 0505735 and by grants DE-FG02-90ER40542 and PHY99-0794. (A. Schwarz)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Movshev, M.V., Schwarz, A. Supersymmetric deformations of maximally supersymmetric gauge theories. J. High Energ. Phys. 2012, 136 (2012). https://doi.org/10.1007/JHEP09(2012)136

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)136

Keywords

Navigation