Skip to main content
Log in

Maximal CP violation in lepton mixing from a model with Δ(27) flavour symmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a simple mechanism which enforces \(\left| {{U_{\mu j}}} \right| = \left| {{U_{\tau j}}} \right|\forall j = 1,2,3\) in the lepton mixing matrix U. This implies maximal atmospheric neutrino mixing and a maximal CP-violating phase but does not constrain the reactor mixing angle θ 13. We implement the proposed mechanism in two renormalizable seesaw models which have features strongly resembling those of models based on a flavour symmetry group Δ(27). Among the predictions of the models, there is a determination, although ambiguous, of the absolute neutrino mass scale, and a stringent correlation between the absolute neutrino mass scale and the effective Majorana mass in neutrinoless double-beta decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  2. DAYA-BAY collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  3. RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  4. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].

    ADS  Google Scholar 

  5. T. Schwetz, M. Tórtola and J.W.F. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D.V. Forero, M. Tórtola and J.W.F. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, arXiv:1205.4018 [INSPIRE].

  7. G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  8. T. Fukuyama and H. Nishiura, Mass matrix of Majorana neutrinos, hep-ph/9702253 [INSPIRE].

  9. R.N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix, Phys. Rev. D 60 (1999) 013002 [hep-ph/9809415] [INSPIRE].

    ADS  Google Scholar 

  10. E. Ma and M. Raidal, Neutrino mass, muon anomalous magnetic moment and lepton flavor nonconservation, Phys. Rev. Lett. 87 (2001) 011802 [Erratum ibid. 87 (2001) 159901] [hep-ph/0102255] [INSPIRE].

    Article  ADS  Google Scholar 

  11. C.S. Lam, A 2-3 symmetry in neutrino oscillations, Phys. Lett. B 507 (2001) 214 [hep-ph/0104116] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K.R.S. Balaji, W. Grimus and T. Schwetz, The solar LMA neutrino oscillation solution in the Zee model, Phys. Lett. B 508 (2001) 301 [hep-ph/0104035] [INSPIRE].

    Article  ADS  Google Scholar 

  13. E. Ma, The all-purpose neutrino mass matrix, Phys. Rev. D 66 (2002) 117301 [hep-ph/0207352] [INSPIRE].

    ADS  Google Scholar 

  14. A. Ghosal, A neutrino mass model with reflection symmetry, Mod. Phys. Lett. A 19 (2004) 2579 [INSPIRE].

    Article  ADS  Google Scholar 

  15. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

    Article  ADS  Google Scholar 

  16. P.F. Harrison and W.G. Scott, μ-τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].

    Article  ADS  Google Scholar 

  17. W. Grimus and L. Lavoura, A non-standard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  19. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].

    ADS  Google Scholar 

  20. G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A.Y. Smirnov, Discrete symmetries and models of flavor mixing, J. Phys. Conf. Ser. 335 (2011) 012006 [arXiv:1103.3461] [INSPIRE].

    Article  ADS  Google Scholar 

  22. P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  23. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan (1979), O. Sawada and A. Sugamoto eds., KEK Report 79-18-95 [INSPIRE].

  24. S.L. Glashow, The future of elementary particle physics, in Quarks and leptons. Proceedings of the Advanced Study Institute, Cargèse France (1979), J.-L. Basdevant et al. eds., Plenum Press, New York U.S.A. (1981).

    Google Scholar 

  25. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and F. van Nieuwenhuizen eds., North Holland, Amsterdam Netherlands (1979) [INSPIRE].

    Google Scholar 

  26. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.A. Escobar and C. Luhn, The flavor group Δ(6n 2), J. Math. Phys. 50 (2009) 013524 [arXiv:0809.0639] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. E. Ma, Neutrino mass matrix from Δ(27) symmetry, Mod. Phys. Lett. A 21 (2006) 1917 [hep-ph/0607056] [INSPIRE].

    Article  ADS  Google Scholar 

  29. E. Ma, Near tribimaximal neutrino mixing with Δ(27) symmetry, Phys. Lett. B 660 (2008) 505 [arXiv:0709.0507] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G.C. Branco, J.M. Gérard and W. Grimus, Geometrical T-violation, Phys. Lett. B 136 (1984) 383 [INSPIRE].

    ADS  Google Scholar 

  31. H. Georgi and D.V. Nanopoulos, Suppression of flavor changing effects from neutral spinless meson exchange in gauge theories, Phys. Lett. B 82 (1979) 95 [INSPIRE].

    Article  ADS  Google Scholar 

  32. W. Grimus, L. Lavoura and B. Radovčić, Type II seesaw mechanism for Higgs doublets and the scale of new physics, Phys. Lett. B 674 (2009) 117 [arXiv:0902.2325] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  34. G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  35. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  36. W. Konetschny and W. Kummer, Nonconservation of total lepton number with scalar bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].

    Article  ADS  Google Scholar 

  37. T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

    ADS  Google Scholar 

  38. G.B. Gelmini and M. Roncadelli, Left-handed neutrino mass scale and spontaneously broken lepton number, Phys. Lett. B 99 (1981) 411 [INSPIRE].

    Article  ADS  Google Scholar 

  39. J.A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308.

    Article  MATH  Google Scholar 

  40. F.T. Avignone, Strategies for next generation neutrinoless double-beta decay experiments, Nucl. Phys. Proc. Suppl. 143 (2005) 233 [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Faessler, A. Meroni, S.T. Petcov, F. Šimkovic and J. Vergados, Uncovering multiple CP-nonconserving mechanisms of (ββ) decay, Phys. Rev. D 83 (2011) 113003 [arXiv:1103.2434] [INSPIRE].

    ADS  Google Scholar 

  42. W. Grimus and L. Lavoura, A three-parameter neutrino mass matrix with maximal CP violation, Phys. Lett. B 671 (2009) 456 [arXiv:0810.4516] [INSPIRE].

    Article  ADS  Google Scholar 

  43. W. Grimus and L. Lavoura, Tri-bimaximal lepton mixing from symmetry only, JHEP 04 (2009) 013 [arXiv:0811.4766] [INSPIRE].

    Article  ADS  Google Scholar 

  44. W. Grimus and H. Neufeld, On spontaneous CP-violation in the lepton sector, Phys. Lett. B 237 (1990) 521 [INSPIRE].

    Article  ADS  Google Scholar 

  45. H.E. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  46. W. Grimus and L. Lavoura, A model realizing the Harrison-Perkins-Scott lepton mixing matrix, JHEP 01 (2006) 018 [hep-ph/0509239] [INSPIRE].

    Article  ADS  Google Scholar 

  47. W. Grimus and L. Lavoura, A three-parameter model for the neutrino mass matrix, J. Phys. G 34 (2007) 1757 [hep-ph/0611149] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R.A. Porto and A. Zee, The private Higgs, Phys. Lett. B 666 (2008) 491 [arXiv:0712.0448] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Y. BenTov and A. Zee, Lepton private Higgs and the discrete group Σ(81), arXiv:1202.4234 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Grimus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, P.M., Grimus, W., Lavoura, L. et al. Maximal CP violation in lepton mixing from a model with Δ(27) flavour symmetry. J. High Energ. Phys. 2012, 128 (2012). https://doi.org/10.1007/JHEP09(2012)128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)128

Keywords

Navigation