Skip to main content
Log in

The fermion mass hierarchy in models with warped extra dimensions and a bulk Higgs

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The phenomenological implications of allowing the Higgs to propagate in both AdS5 and a class of asymptotically AdS spaces are considered. Without tuning, the vacuum expectation value (VEV) of the Higgs is peaked towards the IR tip of the space and hence such a scenario still offers a potential resolution to the gauge-hierarchy problem. When the exponent of the Higgs VEV is approximately two and one assumes order one Yukawa couplings, then the fermion Dirac mass term is found to range from ~ 10−5 eV to ~ 200 GeV in approximate agreement with the observed fermion masses. However, this result is sensitive to the exponent of the Higgs VEV, which is a free parameter. This paper offers a number of phenomenological and theoretical motivations for considering an exponent of two to be the optimal value. In particular, the exponent is bounded from below by the Breitenlohner-Freedman bound and the requirement that the dual theory resolves the gauge hierarchy problem. While, in the model considered, if the exponent is too large, electroweak symmetry may not be broken. In addition, the holographic method is used to demonstrate, in generality, that the flatter the Higgs VEV, the smaller the contribution to the electroweak T parameter. In addition, the constraints from a large class of gauge mediated and scalar mediated flavour changing neutral currents, will be at minimal values for flatter Higgs VEVs. Some initial steps are taken to investigate the physical scalar degrees of freedom that arise from a mixing between the W 5 /Z 5 components and the Higgs components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].

    ADS  Google Scholar 

  5. K. Agashe, T. Okui and R. Sundrum, A common origin for neutrino anarchy and charged hierarchies, Phys. Rev. Lett. 102 (2009) 101801 [arXiv:0810.1277] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].

    Article  ADS  Google Scholar 

  7. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [INSPIRE].

    Article  Google Scholar 

  10. B. Batell and T. Gherghetta, Warped phenomenology in the holographic basis, Phys. Rev. D 77 (2008) 045002 [arXiv:0710.1838] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. T. Gherghetta, TASI lectures on a holographic view of beyond the standard model physics, arXiv:1008.2570 [INSPIRE].

  12. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-wall stabilization, New J. Phys. 12 (2010) 075012 [arXiv:0907.5361] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.A. Cabrer, G. von Gersdorff and M. Quirós, Improving naturalness in warped models with a heavy bulk Higgs boson, Phys. Rev. D 84 (2011) 035024 [arXiv:1104.3149] [INSPIRE].

    ADS  Google Scholar 

  15. J.A. Cabrer, G. von Gersdorff and M. Quirós, Suppressing electroweak precision observables in 5D warped models, JHEP 05 (2011) 083 [arXiv:1103.1388] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Carmona, E. Ponton and J. Santiago, Phenomenology of non-custodial warped models, JHEP 10 (2011) 137 [arXiv:1107.1500] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.A. Cabrer, G. von Gersdorff and M. Quirós, Flavor phenomenology in general 5D warped spaces, JHEP 01 (2012) 033 [arXiv:1110.3324] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  20. K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [INSPIRE].

    ADS  Google Scholar 

  21. P.R. Archer, S.J. Huber and S. Jager, Flavour physics in the soft wall model, JHEP 12 (2011) 101 [arXiv:1108.1433] [INSPIRE].

    Article  ADS  Google Scholar 

  22. H. Davoudiasl, B. Lillie and T.G. Rizzo, Off-the-wall Higgs in the universal Randall-Sundrum model, JHEP 08 (2006) 042 [hep-ph/0508279] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. G. Cacciapaglia, C. Csáki, G. Marandella and J. Terning, The gaugephobic Higgs, JHEP 02 (2007) 036 [hep-ph/0611358] [INSPIRE].

    Article  ADS  Google Scholar 

  24. P. Dey, B. Mukhopadhyaya and S. SenGupta, Bulk Higgs field in a Randall-Sundrum model with nonvanishing brane cosmological constant, Phys. Rev. D 81 (2010) 036011 [arXiv:0911.3761] [INSPIRE].

    ADS  Google Scholar 

  25. L. Vecchi, A natural hierarchy and a low new physics scale from a bulk Higgs, JHEP 11 (2011) 102 [arXiv:1012.3742] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A.D. Medina and E. Ponton, Warped universal extra dimensions, JHEP 06 (2011) 009 [arXiv:1012.5298] [INSPIRE].

    Article  ADS  Google Scholar 

  27. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Bowcock, C. Charmousis and R. Gregory, General brane cosmologies and their global space-time structure, Class. Quant. Grav. 17 (2000) 4745 [hep-th/0007177] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  30. S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  32. P.R. Archer and S.J. Huber, Electroweak constraints on warped geometry in five dimensions and beyond, JHEP 10 (2010) 032 [arXiv:1004.1159] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Bauer, R. Malm and M. Neubert, A solution to the flavor problem of warped extra-dimension models, Phys. Rev. Lett. 108 (2012) 081603 [arXiv:1110.0471] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Bouchart and G. Moreau, Higgs boson phenomenology and VEV shift in the RS scenario, Phys. Rev. D 80 (2009) 095022 [arXiv:0909.4812] [INSPIRE].

    ADS  Google Scholar 

  36. C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Pascoli and S. Petcov, Majorana neutrinos, neutrino mass spectrum and the |〈m〉| ~ 10−3eV frontier in neutrinoless double beta decay, Phys. Rev. D 77 (2008) 113003 [arXiv:0711.4993] [INSPIRE].

    ADS  Google Scholar 

  38. G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].

    ADS  Google Scholar 

  39. M.S. Carena, E. Ponton, T.M. Tait and C. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [INSPIRE].

    ADS  Google Scholar 

  40. M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].

    ADS  Google Scholar 

  41. A. Falkowski and M. Pérez-Victoria, Electroweak breaking on a soft wall, JHEP 12 (2008) 107 [arXiv:0806.1737] [INSPIRE].

    Article  ADS  Google Scholar 

  42. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].

    ADS  Google Scholar 

  43. M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].

    Article  ADS  Google Scholar 

  46. K. Agashe, A.E. Blechman and F. Petriello, Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation, Phys. Rev. D 74 (2006) 053011 [hep-ph/0606021] [INSPIRE].

    ADS  Google Scholar 

  47. C. Csáki, Y. Grossman, P. Tanedo and Y. Tsai, Warped penguin diagrams, Phys. Rev. D 83 (2011) 073002 [arXiv:1004.2037] [INSPIRE].

    ADS  Google Scholar 

  48. M. Blanke, B. Shakya, P. Tanedo and Y. Tsai, The birds and the Bs in RS: the bsγ penguin in a warped extra dimension, JHEP 08 (2012) 038 [arXiv:1203.6650] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Atkins and S.J. Huber, Suppressing lepton flavour violation in a soft-wall extra dimension, Phys. Rev. D 82 (2010) 056007 [arXiv:1002.5044] [INSPIRE].

    ADS  Google Scholar 

  50. A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNCs in warped extra dimensions, Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].

    ADS  Google Scholar 

  51. UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

    Article  ADS  Google Scholar 

  52. K.L. McDonald, Warping, extra dimensions and a slice of AdS d , Phys. Rev. D 81 (2010) 024006 [arXiv:0909.5454] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Archer.

Additional information

ArXiv ePrint: 1204.4730

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, P.R. The fermion mass hierarchy in models with warped extra dimensions and a bulk Higgs. J. High Energ. Phys. 2012, 95 (2012). https://doi.org/10.1007/JHEP09(2012)095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)095

Keywords

Navigation