Skip to main content

Z′ signals in polarised top-antitop final states

Abstract

We study the sensitivity of top-antitop samples produced at all energy stages of the Large Hadron Collider (LHC) to the nature of an underlying Z′ boson, in presence of full tree level standard model (SM) background effects and relative interferences. We concentrate on differential mass spectra as well as both spatial and spin asymmetries thereby demonstrating that exploiting combinations of these observables will enable one to distinguish between sequential Z′s and those pertaining to Left-Right symmetric models as well as E 6 inspired ones, assuming realistic final state reconstruction efficiencies and error estimates.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    J.L. Hewett and M. Spiropulu, Particle physics probes of extra space-time dimensions, Ann. Rev. Nucl. Part. Sci. 52 (2002) 397 [hep-ph/0205106] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    R.N. Mohapatra, Unification and supersymmetry, Springer, New York U.S.A (1986).

    Book  Google Scholar 

  4. [4]

    J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E 6 models, Phys. Rept. 183 (1989) 193 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    D. Chung, L. Everett, G. Kane, S. King, J.D. Lykken, et al., The soft supersymmetry breaking lagrangian: theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    CDF collaboration, T. Aaltonen et al., A search for high-mass resonances decaying to dimuons at CDF, Phys. Rev. Lett. 102 (2009) 091805 [arXiv:0811.0053] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    CDF collaboration, T. Aaltonen et al., Search for high-mass e + e resonances in \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Rev. Lett. 102 (2009) 031801 [arXiv:0810.2059] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    D0 collaboration, Search for heavy Zbosons in the dielectron channel with 200 pb −1 of data with the D0 detector, D0 notes 4375-CONF (2004).

  10. [10]

    D0 collaboration, Search for heavy Zbosons in the dimuon channel with 250 pb −1 of data with the D0 detector, D0 notes 4577-CONF (2004).

  11. [11]

    ATLAS collaboration, G. Aad et al., Search for dilepton resonances in pp collisions at \( \sqrt {s} = {7} \) TeV with the ATLAS detector, Phys. Rev. Lett. 107 (2011) 272002 [arXiv:1108.1582] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    ATLAS collaboration, Search for high-mass dilepton resonances with 5 fb −1 of pp collisions at \( \sqrt {s} = {7} \) TeV with the ATLAS experiment, ATLAS-CONF-2012-007 (2012).

  13. [13]

    CMS collaboration, S. Chatrchyan et al., Search for narrow resonances in dilepton mass spectra in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 714 (2012) 158 [arXiv:1206.1849] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    B. Fuks, M. Klasen, F. Ledroit, Q. Li and J. Morel, Precision predictions for Z- Production at the CERN LHC: QCD matrix elements, parton showers and joint resummation, Nucl. Phys. B 797 (2008) 322 [arXiv:0711.0749] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    R. Hamberg, W. van Neerven and T. Matsuura, A complete calculation of the order \( \alpha_s^2 \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403-404] [INSPIRE].

  16. [16]

    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through \( o\left( {\alpha_s^2} \right) \), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65 (2002) 033007 [hep-ph/0108274] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    P. Langacker, R.W. Robinett and J.L. Rosner, New heavy gauge bosons in pp and \( p\overline p \) collisions, Phys. Rev. D 30 (1984) 1470 [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    A. Leike, The phenomenology of extra neutral gauge bosons, Phys. Rept. 317 (1999) 143 [hep-ph/9805494] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    T.G. Rizzo, Zphenomenology and the LHC, hep-ph/0610104 [INSPIRE].

  22. [22]

    P. Langacker, The physics of heavy Zgauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M.S. Carena, A. Daleo, B.A. Dobrescu and T.M. Tait, Zgauge bosons at the Tevatron, Phys. Rev. D 70 (2004) 093009 [hep-ph/0408098] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    M. Dittmar, A.-S. Nicollerat and A. Djouadi, Zstudies at the LHC: an update, Phys. Lett. B 583 (2004) 111 [hep-ph/0307020] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    J. Erler, P. Langacker, S. Munir and E. Rojas, Improved constraints on Zbosons from electroweak precision data, JHEP 08 (2009) 017 [arXiv:0906.2435] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    C. Corianò, A.E. Faraggi and M. Guzzi, Searching for extra Zfrom strings and other models at the LHC with leptoproduction, Phys. Rev. D 78 (2008) 015012 [arXiv:0802.1792] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    C. Corianò, A.E. Faraggi and M. Guzzi, A novel string derived Zwith stable proton, light-neutrinos and R-parity violation, Eur. Phys. J. C 53 (2008) 421 [arXiv:0704.1256] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    Y. Li, F. Petriello and S. Quackenbush, Reconstructing a ZLagrangian using the LHC and low-energy data, Phys. Rev. D 80 (2009) 055018 [arXiv:0906.4132] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    R. Diener, S. Godfrey and T.A. Martin, Unravelling an extra neutral gauge boson at the LHC using third generation fermions, Phys. Rev. D 83 (2011) 115008 [arXiv:1006.2845] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    J. Erler, P. Langacker, S. Munir and E. Rojas, Zbosons at colliders: a bayesian viewpoint, JHEP 11 (2011) 076 [arXiv:1103.2659] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    F. Petriello and S. Quackenbush, Measuring Zcouplings at the CERN LHC, Phys. Rev. D 77 (2008) 115004 [arXiv:0801.4389] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, Zproduction at the LHC in the four-site Higgsless model, Phys. Rev. D 83 (2011) 015012 [arXiv:1010.0171] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    E. Accomando, S. De Curtis, D. Dominici and L. Fedeli, Drell-Yan production at the LHC in a four site Higgsless model, Phys. Rev. D 79 (2009) 055020 [arXiv:0807.5051] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    P. Athron, S. King, D. Miller, S. Moretti and R. Nevzorov, The constrained exceptional supersymmetric standard model, Phys. Rev. D 80 (2009) 035009 [arXiv:0904.2169] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    P. Athron, S. King, . Miller, D.J., S. Moretti, R. Nevzorov, et al., Predictions of the constrained exceptional supersymmetric standard model, Phys. Lett. B 681 (2009) 448 [arXiv:0901.1192] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    C.P. Hays, A.V. Kotwal and O. Stelzer-Chilton, New techniques in the search for Zbosons and other neutral resonances, Mod. Phys. Lett. A 24 (2009) 2387 [arXiv:0910.1770] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Zmodels: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Zmodels: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    P. Osland, A. Pankov, A. Tsytrinov and N. Paver, Spin and model identification of Zbosons at the LHC, Phys. Rev. D 79 (2009) 115021 [arXiv:0904.4857] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Zphysics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    T. Stelzer and S. Willenbrock, Spin correlation in top quark production at hadron colliders, Phys. Lett. B 374 (1996) 169 [hep-ph/9512292] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    G. Mahlon and S.J. Parke, Angular correlations in top quark pair production and decay at hadron colliders, Phys. Rev. D 53 (1996) 4886 [hep-ph/9512264] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    G. Mahlon and S.J. Parke, Spin correlation effects in top quark pair production at the LHC, Phys. Rev. D 81 (2010) 074024 [arXiv:1001.3422] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    W. Bernreuther, A. Brandenburg, Z. Si and P. Uwer, Top quark spin correlations at hadron colliders: predictions at next-to-leading order QCD, Phys. Rev. Lett. 87 (2001) 242002 [hep-ph/0107086] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    W. Bernreuther, A. Brandenburg, Z. Si and P. Uwer, Investigation of top quark spin correlations at hadron collider, hep-ph/0410197 [INSPIRE].

  46. [46]

    D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, Phys. Rev. D 84 (2011) 014023 [arXiv:1012.4750] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of \( t\overline t \) production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    B. Xiao, Y.-K. Wang, Z.-Q. Zhou and S.-h. Zhu, Edge charge asymmetry in top pair production at the LHC, Phys. Rev. D 83 (2011) 057503 [arXiv:1101.2507] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    E.L. Berger, Q.-H. Cao, C.-R. Chen and H. Zhang, Top quark polarization as a probe of models with extra gauge bosons, Phys. Rev. D 83 (2011) 114026 [arXiv:1103.3274] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    R. Diener, S. Godfrey and T.A. Martin, Unravelling an extra neutral gauge boson at the LHC using third generation fermions, Phys. Rev. D 83 (2011) 115008 [arXiv:1006.2845] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    CDF collaboration, T. Aaltonen et al., A search for resonant production of \( t\overline t \) pairs in 4.8fb−1 of integrated luminosity of \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Rev. D 84 (2011) 072004 [arXiv:1107.5063] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    CDF collaboration, T. Aaltonen et al., Search for resonant production of tt decaying to jets in pp collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Rev. D 84 (2011) 072003 [arXiv:1108.4755] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    D0 collaboration, V. Abazov et al., Search for \( t\overline t \) resonances in the lepton plus jets final state in \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Lett. B 668 (2008) 98 [arXiv:0804.3664] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    ATLAS collaboration, A search for \( t\overline t \) resonances in the lepton plus jets channel in 200 pb −1 of pp collisions at \( \sqrt {s} = {7} \) TeV, ATLAS-CONF-2011-087 (2011).

  56. [56]

    ATLAS collaboration, A search for \( t\overline t \) resonances in the dilepton channel in 1.04/fb of pp collisions at \( \sqrt {s} = {7} \) TeV, ATLAS-CONF-2011-123 (2011).

  57. [57]

    CMS collaboration, Search for BSM tt production in the boosted all-hadronic final state, PAS-EXO-11-006 (2011).

  58. [58]

    CMS collaboration, Search for heavy narrow resonances decaying to ttbar in the muon+jets channel, PAS-EXO-11-055 (2011).

  59. [59]

    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    W. Bernreuther, A. Brandenburg, Z. Si and P. Uwer, Top quark pair production and decay including spin effects at hadron colliders: predictions at NLO QCD, Int. J. Mod. Phys. A 18 (2003) 1357 [hep-ph/0111346] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    N. Kidonakis and R. Vogt, The theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    M. Czakon and A. Mitov, Inclusive heavy flavor hadroproduction in NLO QCD: the exact analytic result, Nucl. Phys. B 824 (2010) 111 [arXiv:0811.4119] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production and decay at hadron colliders, JHEP 08 (2009) 049 [arXiv:0907.3090] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. Full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].

  68. [68]

    W. Beenakker, H. Kuijf, W. van Neerven and J. Smith, QCD Corrections to heavy quark production in \( p\overline p \) collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    W. Beenakker, W. van Neerven, R. Meng, G. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    S. Moretti, M. Nolten and D. Ross, Weak corrections to gluon-induced top-antitop hadro-production, Phys. Lett. B 639 (2006) 513 [Erratum ibid. B 660 (2008) 607-609] [hep-ph/0603083] [INSPIRE].

  72. [72]

    J.H. Kuhn, A. Scharf and P. Uwer, Electroweak effects in top-quark pair production at hadron colliders, Eur. Phys. J. C 51 (2007) 37 [hep-ph/0610335] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    W. Hollik and M. Kollar, NLO QED contributions to top-pair production at hadron collider, Phys. Rev. D 77 (2008) 014008 [arXiv:0708.1697] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    W. Bernreuther, M. Fucker and Z.-G. Si, Weak interaction corrections to hadronic top quark pair production: contributions from quark-gluon and \( b\overline b \) induced reactions, Phys. Rev. D 78 (2008) 017503 [arXiv:0804.1237] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    W. Bernreuther, M. Fucker and Z. Si, Mixed QCD and weak corrections to \( t\overline t \) production by quark-antiquark annihilation, Int. J. Mod. Phys. A 21 (2006) 914 [hep-ph/0509210] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    W. Beenakker, A. Denner, W. Hollik, R. Mertig, T. Sack, et al., Electroweak one loop contributions to top pair production in hadron colliders, Nucl. Phys. B 411 (1994) 343 [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    C. Kao, G. Ladinsky and C. Yuan, Leading weak corrections to the production of heavy top quarks at hadron colliders, Int. J. Mod. Phys. A 12 (1997) 1341 [INSPIRE].

    ADS  Article  Google Scholar 

  78. [78]

    C. Kao and D. Wackeroth, Parity violating asymmetries in top pair production at hadron colliders, Phys. Rev. D 61 (2000) 055009 [hep-ph/9902202] [INSPIRE].

    ADS  Google Scholar 

  79. [79]

    H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK Report 91-11 (1992) [SPIRES].

  80. [80]

    T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky, et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192 [erratum CLNS-80/447 (1980)] [INSPIRE].

  83. [83]

    R. Brown, D. Sahdev and K. Mikaelian, Probing higher order QCD: charge conjugation asymmetries from two gluon exchange, Phys. Rev. Lett. 43 (1979) 1069 [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    J.H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [INSPIRE].

    ADS  Google Scholar 

  85. [85]

    J. Aguilar-Saavedra and M. Pérez-Victoria, Simple models for the top asymmetry: constraints and predictions, JHEP 09 (2011) 097 [arXiv:1107.0841] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    J. Aguilar-Saavedra and M. Pérez-Victoria, Asymmetries in \( t\overline t \) production: LHC versus Tevatron, Phys. Rev. D 84 (2011) 115013 [arXiv:1105.4606] [INSPIRE].

    ADS  Google Scholar 

  87. [87]

    O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [INSPIRE].

    ADS  Google Scholar 

  88. [88]

    Z.-q. Zhou, B. Xiao, Y.-k. Wang and S.-h. Zhu, Discriminating different Zs via asymmetries at the LHC, Phys. Rev. D 83 (2011) 094022 [arXiv:1102.1044] [INSPIRE].

    ADS  Google Scholar 

  89. [89]

    M. Arai, N. Okada, K. Smolek and V. Simak, Influence of Zboson on top quark spin correlations at the LHC, Acta Phys. Polon. B 40 (2009) 93 [arXiv:0804.3740] [INSPIRE].

    ADS  Google Scholar 

  90. [90]

    K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e + e annihilation, Nucl. Phys. B 274 (1986) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  91. [91]

    J.L. Hewett, J. Shelton, M. Spannowsky, T.M. Tait and M. Takeuchi, \( A_{{\mathrm{FB}}}^t \) meets LHC, Phys. Rev. D 84 (2011) 054005 [arXiv:1103.4618] [INSPIRE].

    ADS  Google Scholar 

  92. [92]

    J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].

    ADS  Article  Google Scholar 

  93. [93]

    E. Alvarez, Improving top quark induced charge asymmetries at the LHC using \( t\overline t \) transverse momentum, Phys. Rev. D 85 (2012) 094026 [arXiv:1202.6622] [INSPIRE].

    ADS  Google Scholar 

  94. [94]

    CMS collaboration, CMS physics technical design report volume I : detector performance and software, CERN-LHCC-2006-001 (2006).

  95. [95]

    ATLAS collaboration, ATLAS detector and physics performance technical design report, 1, CERN-LHCC-99-14 (1999).

  96. [96]

    ATLAS collaboration, ATLAS detector and physics performance: technical design report, 2, CERN-LHCC-99-15 (1999).

  97. [97]

    M. Frank, A. Hayreter and I. Turan, Top quark pair production and asymmetry at the Tevatron and LHC in left-right models, Phys. Rev. D 84 (2011) 114007 [arXiv:1108.0998] [INSPIRE].

    ADS  Google Scholar 

  98. [98]

    CMS collaboration, S. Chatrchyan et al., Measurement of the charge asymmetry in top-quark pair production in proton-proton collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 709 (2012) 28 [arXiv:1112.5100] [INSPIRE].

    ADS  Article  Google Scholar 

  99. [99]

    E. Accomando, I. Antoniadis and K. Benakli, Looking for TeV scale strings and extra dimensions, Nucl. Phys. B 579 (2000) 3 [hep-ph/9912287] [INSPIRE].

    ADS  Article  Google Scholar 

  100. [100]

    G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].

    ADS  Article  Google Scholar 

  101. [101]

    S. De Curtis, M. Redi and A. Tesi, The 4d composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].

    Article  Google Scholar 

  102. [102]

    C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [INSPIRE].

    ADS  Article  Google Scholar 

  103. [103]

    L. Basso, K. Mimasu and S. Moretti, Non-exotic Zsignals in ℓ + , \( b\overline b \) and \( t\overline t \) final states at the LHC, arXiv:1208.0019 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Mimasu.

Additional information

ArXiv ePrint: 1203.2542

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Basso, L., Mimasu, K. & Moretti, S. Z′ signals in polarised top-antitop final states. J. High Energ. Phys. 2012, 24 (2012). https://doi.org/10.1007/JHEP09(2012)024

Download citation

Keywords

  • Beyond Standard Model
  • Heavy Quark Physics