Skip to main content
Log in

What two models may teach us about duality violations in QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Though the operator product expansion is applicable in the calculation of current correlation functions in the Euclidean region, when approaching the Minkowskian domain, violations of quark-hadron duality are expected to occur, due to the presence of bound-state or resonance poles. In QCD finite-energy sum rules, contour integrals in the complex energy plane down to the Minkowskian axis have to be performed, and thus the question arises what the impact of duality violations may be. The structure and possible relevance of duality violations is investigated on the basis of two models: the Coulomb system and a model for light-quark correlators which has already been studied previously. As might yet be naively expected, duality violations are in some sense “maximal” for zero-width bound states and they become weaker for broader resonances whose poles lie further away from the physical axis. Furthermore, to a certain extent, they can be suppressed by choosing appropriate weight functions in the finite-energy sum rules. A simplified Ansatz for including effects of duality violations in phenomenological QCD sum rule analyses is discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev. 179 (1969) 1499 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  2. E. Witten, Short Distance Analysis of Weak Interactions, Nucl. Phys. B 122 (1977) 109 [SPIRES].

    Article  ADS  Google Scholar 

  3. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and Resonance Physics. Sum Rules, Nucl. Phys. B 147 (1979) 385 [SPIRES].

    Article  ADS  Google Scholar 

  4. E. Braaten, S. Narison and A. Pich, QCD analysis of the τ hadronic width, Nucl. Phys. B 373 (1992) 581 [SPIRES].

    Article  ADS  Google Scholar 

  5. M.A. Shifman, Theory of pre-asymptotic effects in weak inclusive decays, hep-ph/9405246 [SPIRES].

  6. M.A. Shifman, Recent progress in the heavy quark theory, hep-ph/9505289 [SPIRES].

  7. B. Chibisov, R.D. Dikeman, M.A. Shifman and N. Uraltsev, Operator product expansion, heavy quarks, QCD duality and its violations, Int. J. Mod. Phys. A 12 (1997) 2075 [hep-ph/9605465] [SPIRES].

    ADS  Google Scholar 

  8. B. Blok, M.A. Shifman and D.-X. Zhang, An illustrative example of how quark-hadron duality might work, Phys. Rev. D 57 (1998) 2691 [hep-ph/9709333] [SPIRES].

    ADS  Google Scholar 

  9. M.A. Shifman, Quark-hadron duality, hep-ph/0009131 [SPIRES].

  10. K.G. Chetyrkin, N.V. Krasnikov and A.N. Tavkhelidze, Finite Energy Sum Rules for the Cross-Section of e + e Annihilation Into Hadrons in QCD, Phys. Lett. B 76 (1978) 83 [SPIRES].

    ADS  Google Scholar 

  11. N.V. Krasnikov, A.A. Pivovarov and N.N. Tavkhelidze, The Use of Finite Energy Sum Rules for the Description of the Hadronic Properties of QCD, Z. Phys. C 19 (1983) 301 [SPIRES].

    ADS  Google Scholar 

  12. O. Catà, M. Golterman and S. Peris, Duality violations and spectral sum rules, JHEP 08 (2005) 076 [hep-ph/0506004] [SPIRES].

    Article  ADS  Google Scholar 

  13. O. Catà, M. Golterman and S. Peris, Unraveling duality violations in hadronic τ decays, Phys. Rev. D 77 (2008) 093006 [arXiv:0803.0246] [SPIRES].

    ADS  Google Scholar 

  14. O. Catà, M. Golterman and S. Peris, Possible duality violations in τ decay and their impact on the determination of α s , Phys. Rev. D 79 (2009) 053002 [arXiv:0812.2285] [SPIRES].

    ADS  Google Scholar 

  15. M. Gonzalez-Alonso, A. Pich and J. Prades, Violation of Quark-Hadron Duality and Spectral Chiral Moments in QCD, Phys. Rev. D 81 (2010) 074007 [arXiv:1001.2269] [SPIRES].

    ADS  Google Scholar 

  16. M. Gonzalez-Alonso, A. Pich and J. Prades, Pinched weights and Duality Violation in QCD Sum Rules: a critical analysis, Phys. Rev. D 82 (2010) 014019 [arXiv:1004.4987] [SPIRES].

    ADS  Google Scholar 

  17. ALEPH collaboration, S. Schael et al., Branching ratios and spectral functions of τ decays: Final ALEPH measurements and physics implications, Phys. Rept. 421 (2005) 191 [hep-ex/0506072] [SPIRES].

    Article  ADS  Google Scholar 

  18. P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Order α s 4 QCD Corrections to Z and τ Decays, Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821] [SPIRES].

    Article  ADS  Google Scholar 

  19. M. Beneke and M. Jamin, α s and the τ hadronic width: fixed-order, contour-improved and higher-order perturbation theory, JHEP 09 (2008) 044 [arXiv:0806.3156] [SPIRES].

    Article  ADS  Google Scholar 

  20. M. Davier, S. Descotes-Genon, A. Höcker, B. Malaescu and Z. Zhang, The Determination of α s from τ Decays Revisited, Eur. Phys. J. C 56 (2008) 305 [arXiv:0803.0979] [SPIRES].

    Article  ADS  Google Scholar 

  21. K. Maltman and T. Yavin, α s (M Z 2) from hadronic τ decays, Phys. Rev. D 78 (2008) 094020 [arXiv:0807.0650] [SPIRES].

    ADS  Google Scholar 

  22. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  23. T. Regge, Introduction to complex orbital momenta, Nuovo Cim. 14 (1959) 951 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  24. P.D.B. Collins, Regge theory and particle physics, Phys. Rept. 1 (1971) 103 [SPIRES].

    Article  ADS  Google Scholar 

  25. M.B. Voloshin, Precision determination of α s and m b from QCD sum rules for \( b\bar{b} \), Int. J. Mod. Phys. A 10 (1995) 2865 [hep-ph/9502224] [SPIRES].

    ADS  Google Scholar 

  26. M. Eidemuller, QCD moment sum rules for Coulomb systems: the charm and bottom quark masses, Phys. Rev. D 67 (2003) 113002 [hep-ph/0207237] [SPIRES].

    ADS  Google Scholar 

  27. M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, Penguins with Charm and Quark-Hadron Duality, Eur. Phys. J. C 61 (2009) 439 [arXiv:0902.4446] [SPIRES].

    Article  ADS  Google Scholar 

  28. M. Beylich, G. Buchalla and T. Feldmann, Theory of B → K (∗) l + l decays at high q 2 : OPE and quark-hadron duality, Eur. Phys. J. C 71 (2011) 1635 [arXiv:1101.5118] [SPIRES].

    Article  ADS  Google Scholar 

  29. J. Mondejar and A. Pineda, Deep inelastic scattering and factorization in the ’t Hooft Model, Phys. Rev. D 79 (2009) 085011 [arXiv:0901.3113] [SPIRES].

    ADS  Google Scholar 

  30. A.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, Asymptotic freedom in quantum mechanics, Sov. J. Nucl. Phys. 32 (1980) 840 [SPIRES].

    MathSciNet  Google Scholar 

  31. J.S. Bell and R. Bertlmann, MAGIC Moments, Nucl. Phys. B 177 (1981) 218 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  32. V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Are All Hadrons Alike? Technical Appendices, Nucl. Phys. B 191 (1981) 301 [SPIRES].

    Article  ADS  Google Scholar 

  33. P. Pascual and R. Tarrach, Lecture Notes in Physics. Vol. 194: QCD: Renormalization for the Practitioner, Springer-Verlag, Heidelberg Germany (1984).

    Book  Google Scholar 

  34. S.L. Adler, Some Simple Vacuum Polarization Phenomenology: e + e  → Hadrons: The μ-Mesic Atom x-Ray Discrepancy and (g − 2) of the Muon, Phys. Rev. D 10 (1974) 3714 [SPIRES].

    ADS  Google Scholar 

  35. K. Melnikov and A. Yelkhovsky, The b quark low-scale running mass from Upsilon sum rules, Phys. Rev. D 59 (1999) 114009 [hep-ph/9805270] [SPIRES].

    ADS  Google Scholar 

  36. A. Galindo and P. Pascual, Quantum Mechanics I, Springer-Verlag, Heidelberg Germany (1990).

    MATH  Google Scholar 

  37. A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Ann. Phys. 403 (1931) 257.

    Article  Google Scholar 

  38. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions,Dover Publications, Mineola U.S.A. (1972).

    MATH  Google Scholar 

  39. R.B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, New York U.S.A. (1973).

    MATH  Google Scholar 

  40. R.B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes Integrals, Cambridge University Press, Cambridge U.K. (2001)

    Book  MATH  Google Scholar 

  41. D.R. Boito et al., Duality violations in τ hadronic spectral moments, Nucl. Phys. Proc. Suppl. 218 (2011) 104 [arXiv:1011.4426] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Jamin.

Additional information

ArXiv ePrint: 1103.2718

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamin, M. What two models may teach us about duality violations in QCD. J. High Energ. Phys. 2011, 141 (2011). https://doi.org/10.1007/JHEP09(2011)141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)141

Keywords

Navigation