Skip to main content
Log in

Neutrino mass, sneutrino dark matter and signals of lepton flavor violation in the MRSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the phenomenology of mixed-sneutrino dark matter in the Minimal R-symmetric Supersymmetric Standard Model (MRSSM). Mixed sneutrinos fit naturally within the MRSSM, as the smallness (or absence) of neutrino Yukawa couplings singles out sneutrino A-terms as the only ones not automatically forbidden by R-symmetry. We perform a study of randomly generated sneutrino mass matrices and find that (i) the measured value of Ω DM is well within the range of typical values obtained for the relic abundance of the lightest sneutrino, (ii) with small lepton-number-violating mass terms m nn 2 ññ for the right-handed sneutrinos, random matrices satisfying the Ω DM constraint have a decent probability of satisfying direct detection constraints, and much of the remaining parameter space will be probed by upcoming experiments, (iii) the m nn 2 ññ terms radiatively generate appropriately small Majorana neutrino masses, with neutrino oscillation data favoring a mostly sterile lightest sneutrino with a dominantly μ/τ-flavored active component, and (iv) a sneutrino LSP with a significant μ component can lead to striking signals of e-μ flavor violation in dilepton invariant-mass distributions at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gabbiani and A. Masiero, FCNC in generalized supersymmetric theories, Nucl. Phys. B 322 (1989) 235 [SPIRES].

    Article  ADS  Google Scholar 

  2. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [SPIRES].

    Article  ADS  Google Scholar 

  3. G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [SPIRES].

    ADS  Google Scholar 

  4. P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [SPIRES].

    Article  ADS  Google Scholar 

  5. L.J. Hall and L. Randall, U(1)-R symmetric supersymmetry, Nucl. Phys. B 352 (1991) 289 [SPIRES].

    Article  ADS  Google Scholar 

  6. L. Randall and N. Rius, The minimal U(1)-R symmetric model revisited, Phys. Lett. B 286 (1992) 299 [SPIRES].

    ADS  Google Scholar 

  7. M. Dine and D. MacIntire, Supersymmetry, naturalness and dynamical supersymmetry breaking, Phys. Rev. D 46 (1992) 2594 [hep-ph/9205227] [SPIRES].

    ADS  Google Scholar 

  8. N. Arkani-Hamed, H.-C. Cheng, J.L. Feng and L.J. Hall, Probing lepton flavor violation at future colliders, Phys. Rev. Lett. 77 (1996) 1937 [hep-ph/9603431] [SPIRES].

    Article  ADS  Google Scholar 

  9. S.I. Bityukov and N.V. Krasnikov, The search for sleptons and lepton-flavor-number violation at LHC (CMS), Phys. Atom. Nucl. 62 (1999) 1213 [hep-ph/9712358] [SPIRES].

    ADS  Google Scholar 

  10. K. Agashe and M. Graesser, Signals of supersymmetric lepton flavor violation at the LHC, Phys. Rev. D 61 (2000) 075008 [hep-ph/9904422] [SPIRES].

    ADS  Google Scholar 

  11. A. Bartl et al., Test of lepton flavour violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [SPIRES].

    Article  ADS  Google Scholar 

  12. N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [SPIRES].

    ADS  Google Scholar 

  13. Z. Thomas, D. Tucker-Smith and N. Weiner, Mixed sneutrinos, dark matter and the LHC, Phys. Rev. D 77 (2008) 115015 [arXiv:0712.4146] [SPIRES].

    ADS  Google Scholar 

  14. G.D. Kribs, A. Martin and T.S. Roy, Squark flavor violation at the LHC, JHEP 06 (2009) 042 [arXiv:0901.4105] [SPIRES].

    Article  ADS  Google Scholar 

  15. J.S. Hagelin, G.L. Kane and S. Raby, Perhaps scalar neutrinos are the lightest supersymmetric partners, Nucl. Phys. B 241 (1984) 638 [SPIRES].

    Article  ADS  Google Scholar 

  16. L.E. Ibáñez, The scalar neutrinos as the lightest supersymmetric particles and cosmology, Phys. Lett. B 137 (1984) 160 [SPIRES].

    ADS  Google Scholar 

  17. F. Borzumati and Y. Nomura, Low-scale see-saw mechanisms for light neutrinos, Phys. Rev. D 64 (2001) 053005 [hep-ph/0007018] [SPIRES].

    ADS  Google Scholar 

  18. C.L. Chou, H.L. Lai and C.P. Yuan, New production mechanism of neutral Higgs bosons with right scalar tau neutrino as the LSP, Phys. Lett. B 489 (2000) 163 [hep-ph/0006313] [SPIRES].

    ADS  Google Scholar 

  19. T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter, Phys. Rev. D 73 (2006) 051301 [hep-ph/0512118] [SPIRES].

    ADS  Google Scholar 

  20. T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter of the universe, AIP Conf. Proc. 903 (2007) 16 [SPIRES].

    Article  ADS  Google Scholar 

  21. S. Gopalakrishna, A. de Gouvêa and W. Porod, Right-handed sneutrinos as nonthermal dark matter, JCA P 05 (2006) 005 [hep-ph/0602027] [SPIRES].

    ADS  Google Scholar 

  22. H.-S. Lee, K.T. Matchev and S. Nasri, Revival of the thermal sneutrino dark matter, Phys. Rev. D 76 (2007) 041302 [hep-ph/0702223] [SPIRES].

    ADS  Google Scholar 

  23. C. Arina and N. Fornengo, Sneutrino cold dark matter, a new analysis: Relic abundance and detection rates, JHEP 11 (2007) 029 [arXiv:0709.4477] [SPIRES].

    Article  ADS  Google Scholar 

  24. T. Han and R. Hempfling, Messenger sneutrinos as cold dark matter, Phys. Lett. B 415 (1997) 161 [hep-ph/9708264] [SPIRES].

    ADS  Google Scholar 

  25. L.J. Hall, T. Moroi and H. Murayama, Sneutrino cold dark matter with lepton-number violation, Phys. Lett. B 424 (1998) 305 [hep-ph/9712515] [SPIRES].

    ADS  Google Scholar 

  26. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [SPIRES].

    ADS  Google Scholar 

  27. L.J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett. 84 (2000) 2572 [hep-ph/9911341] [SPIRES].

    Article  ADS  Google Scholar 

  28. W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [SPIRES].

    Article  ADS  Google Scholar 

  29. A.E. Nelson, N. Rius, V. Sanz and M. Ünsal, The minimal supersymmetric model without a μ term, JHEP 08 (2002) 039 [hep-ph/0206102] [SPIRES].

    Article  ADS  Google Scholar 

  30. C. Hamzaoui, M. Pospelov and M. Toharia, Higgs-mediated FCNC in supersymmetric models with large tan β, Phys. Rev. D 59 (1999) 095005 [hep-ph/9807350] [SPIRES].

    ADS  Google Scholar 

  31. N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Neutrino masses at v 3/2, hep-ph/0007001 [SPIRES].

  32. F. Borzumati, K. Hamaguchi, Y. Nomura and T. Yanagida, Variations on supersymmetry breaking and neutrino spectra, hep-ph/0012118 [SPIRES].

  33. L.J. Hall, V.A. Kostelecky and S. Raby, New flavor violations in supergravity models, Nucl. Phys. B 267 (1986) 415 [SPIRES].

    Article  ADS  Google Scholar 

  34. M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [SPIRES].

    Article  ADS  Google Scholar 

  35. D. Tucker-Smith and N. Weiner, Inelastic dark matter at DAMA, CDMS and future experiments, Nucl. Phys. Proc. Suppl. 124 (2003) 197 [astro-ph/0208403] [SPIRES].

    Article  ADS  Google Scholar 

  36. H.-Y. Cheng, Low-energy interactions of scalar and pseudoscalar Higgs bosons with baryons, Phys. Lett. B 219 (1989) 347 [SPIRES].

    ADS  Google Scholar 

  37. T. Hatsuda and T. Kunihiro, Strange quark, heavy quarks and gluon contents of light hadrons, Nucl. Phys. B 387 (1992) 715 [SPIRES].

    Article  ADS  Google Scholar 

  38. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [SPIRES].

    ADS  Google Scholar 

  39. J. Giedt, A.W. Thomas and R.D. Young, Dark matter, the CMSSM and lattice QCD, Phys. Rev. Lett. 103 (2009) 201802 [arXiv:0907.4177] [SPIRES].

    Article  ADS  Google Scholar 

  40. CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the Cryogenic Dark Matter Search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [SPIRES].

    Article  ADS  Google Scholar 

  41. XENON collaboration, J. Angle et al., First results from the XENON 10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].

    Article  ADS  Google Scholar 

  42. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  43. WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

    Article  ADS  Google Scholar 

  44. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 177 (2007) 894 [SPIRES].

    Article  ADS  Google Scholar 

  45. A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, 1 and generation of matrix elements for other packages, hep-ph/0412191 [SPIRES].

  46. E. Carquin, J. Ellis, M.E. Gomez, S. Lola and J. Rodriguez-Quintero, Search for τ flavour violation at the LHC, JHEP 05 (2009) 026 [arXiv:0812.4243] [SPIRES].

    Article  ADS  Google Scholar 

  47. J.L. Feng, C.G. Lester, Y. Nir and Y. Shadmi, The standard model and supersymmetric flavor puzzles at the Large Hadron Collider, Phys. Rev. D 77 (2008) 076002 [arXiv:0712.0674] [SPIRES].

    ADS  Google Scholar 

  48. J.L. Feng, I. Galon, D. Sanford, Y. Shadmi and F. Yu, Three-body decays of sleptons with general flavor violation and left-right mixing, Phys. Rev. D 79 (2009) 116009 [arXiv:0904.1416] [SPIRES].

    ADS  Google Scholar 

  49. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 64 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar.

Additional information

ArXiv ePrint: 0910.2475

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Tucker-Smith, D. & Weiner, N. Neutrino mass, sneutrino dark matter and signals of lepton flavor violation in the MRSSM. J. High Energ. Phys. 2010, 111 (2010). https://doi.org/10.1007/JHEP09(2010)111

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)111

Keywords

Navigation