Skip to main content
Log in

Heavy ion collisions with transverse dynamics from evolving AdS geometries

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Currently there exists no known way to construct the Stress-Energy Tensor (T μν) of the produced medium in heavy ion collisions at strong coupling from purely theoretical grounds. In this paper, some steps are taken in that direction. In particular, the evolution of T μν at strong coupling and at high energies is being studied for early proper times (τ). This is achieved in the context of the AdS/CFT duality by constructing the evolution of the dual geometry in an AdS5 background. Improving the earlier works in the literature, the two incident nuclei have an impact parameter b and a non-trivial transverse profile. The nuclear matter is modeled by two shock waves corresponding to a non-zero five dimensional bulk Stress-Energy Tensor J MN. An analytic formula for T μν at small τ is derived and is used in order to calculate the momentum anisotropy and spatial eccentricity of the medium produced in the collision as a function of the ratio \( \frac{\tau }{b} \). The result for eccentricity at intermediate \( \frac{\tau }{b} \) agrees qualitatively with the results obtained in the context of perturbation theory and by using hydrodynamic simulations. Finally, the problem of the negative energy density and its natural connection to the eikonal approximation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.F. Kolb, J. Sollfrank and U.W. Heinz, Anisotropic transverse flow and the quark-hadron phase transition, Phys. Rev. C 62 (2000) 054909 [hep-ph/0006129] [SPIRES].

    ADS  Google Scholar 

  2. P.F. Kolb, P. Huovinen, U.W. Heinz and H. Heiselberg, Elliptic flow at SPS and RHIC: From kinetic transport to hydrodynamics, Phys. Lett. B 500 (2001) 232 [hep-ph/0012137] [SPIRES].

    ADS  Google Scholar 

  3. P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen and S.A. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett. B 503 (2001) 58 [hep-ph/0101136] [SPIRES].

    ADS  Google Scholar 

  4. P.F. Kolb, U.W. Heinz, P. Huovinen, K.J. Eskola and K. Tuominen, Centrality dependence of multiplicity, transverse energy and elliptic flow from hydrodynamics, Nucl. Phys. A 696 (2001) 197 [hep-ph/0103234] [SPIRES].

    ADS  Google Scholar 

  5. U.W. Heinz and P.F. Kolb, Early thermalization at RHIC, Nucl. Phys. A 702 (2002) 269 [hep-ph/0111075] [SPIRES].

    ADS  Google Scholar 

  6. D. Teaney and E.V. Shuryak, An unusual space-time evolution for heavy ion collisions at high energies due to the QCD phase transition, Phys. Rev. Lett. 83 (1999) 4951 [nucl-th/9904006] [SPIRES].

    ADS  Google Scholar 

  7. D. Teaney, J. Lauret and E.V. Shuryak, Flow at the SPS and RHIC as a quark gluon plasma signature, Phys. Rev. Lett. 86 (2001) 4783 [nucl-th/0011058] [SPIRES].

    ADS  Google Scholar 

  8. D. Teaney, J. Lauret and E.V. Shuryak, A hydrodynamic description of heavy ion collisions at the SPS and RHIC, nucl-th/0110037 [SPIRES].

  9. D. Teaney, Effect of shear viscosity on spectra, elliptic flow and Hanbury Brown-Twiss radii, Phys. Rev. C 68 (2003) 034913 [nucl-th/0301099] [SPIRES].

    ADS  Google Scholar 

  10. G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N =4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].

    ADS  Google Scholar 

  11. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    ADS  Google Scholar 

  15. Y.V. Kovchegov and A. Taliotis, Early time dynamics in heavy ion collisions from AdS/CFT correspondence, Phys. Rev. C 76 (2007) 014905 [arXiv:0705.1234] [SPIRES].

    ADS  Google Scholar 

  16. G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev. C 71 (2005) 064904 [hep-ph/0412346] [SPIRES].

    ADS  Google Scholar 

  17. J. Casalderrey-Solana, E.V. Shuryak and D. Teaney, Conical flow induced by quenched QCD jets, J. Phys. Conf. Ser. 27 (2005) 22 [Nucl. Phys. A 774 (2006) 577] [hep-ph/0411315] [SPIRES].

    ADS  Google Scholar 

  18. J. Casalderrey-Solana, E.V. Shuryak and D. Teaney, Hydrodynamic flow from fast particles, hep-ph/0602183 [SPIRES].

  19. E.V. Shuryak, Strongly coupled quark-gluon plasma: The status report, hep-ph/0608177 [SPIRES].

  20. R. Baier, A.H. Mueller, D. Schiff and D.T. Son, ’Bottom-up’ thermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [SPIRES].

    ADS  Google Scholar 

  21. P.B. Arnold, J. Lenaghan and G.D. Moore, QCD plasma instabilities and bottom-up thermalization, JHEP 08 (2003) 002 [hep-ph/0307325] [SPIRES].

    ADS  Google Scholar 

  22. S. Mrowczynski, Stream instabilities of the quark-gluon plasma, Phys. Lett. B 214 (1988) 587 [Erratum ibid. B 656 (2007) 273] [SPIRES].

    ADS  Google Scholar 

  23. S. Mrowczynski, Plasma instability at the initial stage of ultrarelativistic heavy ion collisions, Phys. Lett. B 314 (1993) 118 [SPIRES].

    ADS  Google Scholar 

  24. Y.V. Kovchegov, Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions, Nucl. Phys. A 764 (2006) 476 [hep-ph/0507134] [SPIRES].

    ADS  Google Scholar 

  25. Y.V. Kovchegov, Isotropization and thermalization in heavy ion collisions, Nucl. Phys. A 774 (2006) 869 [Eur. Phys. J. A 29 (2006) 43] [hep-ph/0510232] [SPIRES].

    ADS  Google Scholar 

  26. Y.V. Kovchegov, Can thermalization in heavy ion collisions be described by QCD diagrams?, Nucl. Phys. A 762 (2005) 298 [hep-ph/0503038] [SPIRES].

    ADS  Google Scholar 

  27. J .P. Blaizot and A.H. Mueller, The early stage of ultrarelativistic heavy ion collisions, Nucl. Phys. B 289 (1987) 847 [SPIRES].

    ADS  Google Scholar 

  28. L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [SPIRES].

    ADS  Google Scholar 

  29. L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [SPIRES].

    ADS  Google Scholar 

  30. L.D. McLerran and R. Venugopalan, Green’s functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [SPIRES].

    ADS  Google Scholar 

  31. Y.V. Kovchegov, Non-Abelian Weizsaecker-Williams field and a two-dimensional effective color charge density for a very large nucleus, Phys. Rev. D 54 (1996) 5463 [hep-ph/9605446] [SPIRES].

    ADS  Google Scholar 

  32. Y.V. Kovchegov, Quantum structure of the non-Abelian Weizsaecker-Williams field for a very large nucleus, Phys. Rev. D 55 (1997) 5445 [hep-ph/9701229] [SPIRES].

    ADS  Google Scholar 

  33. A. Kovner, L.D. McLerran and H. Weigert, Gluon production from nonAbelian Weizsacker-Williams fields in nucleus-nucleus collisions, Phys. Rev. D 52 (1995) 6231 [hep-ph/9502289] [SPIRES].

    ADS  Google Scholar 

  34. A. Krasnitz and R. Venugopalan, Non-perturbative computation of gluon mini-jet production in nuclear collisions at very high energies, Nucl. Phys. B 557 (1999) 237 [hep-ph/9809433] [SPIRES].

    ADS  Google Scholar 

  35. A. Krasnitz and R. Venugopalan, The initial energy density of gluons produced in very high energy nuclear collisions, Phys. Rev. Lett. 84 (2000) 4309 [hep-ph/9909203] [SPIRES].

    ADS  Google Scholar 

  36. A. Krasnitz, Y. Nara and R. Venugopalan, Classical gluodynamics of high energy nuclear collisions: An erratum and an update, Nucl. Phys. A 727 (2003) 427 [hep-ph/0305112] [SPIRES].

    ADS  Google Scholar 

  37. Y.V. Kovchegov, Classical initial conditions for ultrarelativistic heavy ion collisions, Nucl. Phys. A 692 (2001) 557 [hep-ph/0011252] [SPIRES].

    ADS  Google Scholar 

  38. D. Kharzeev and M. Nardi, Hadron production in nuclear collisions at RHIC and high density QCD, Phys. Lett. B 507 (2001) 121 [nucl-th/0012025] [SPIRES].

    ADS  Google Scholar 

  39. D. Kharzeev, E. Levin and M. Nardi, The onset of classical QCD dynamics in relativistic heavy ion collisions, Phys. Rev. C 71 (2005) 054903 [hep-ph/0111315] [SPIRES].

    ADS  Google Scholar 

  40. D. Kharzeev, E. Levin and L. McLerran, Parton saturation and N part scaling of semi-hard processes in QCD, Phys. Lett. B 561 (2003) 93 [hep-ph/0210332] [SPIRES].

    ADS  Google Scholar 

  41. D. Kharzeev, Y.V. Kovchegov and K. Tuchin, Nuclear modification factor in d + Au collisions: Onset of suppression in the color glass condensate, Phys. Lett. B 599 (2004) 23 [hep-ph/0405045] [SPIRES].

    ADS  Google Scholar 

  42. J.L. Albacete, N. Armesto, A. Kovner, C.A. Salgado and U.A. Wiedemann, Energy dependence of the Cronin effect from non-linear QCD evolution, Phys. Rev. Lett. 92 (2004) 082001 [hep-ph/0307179] [SPIRES].

    ADS  Google Scholar 

  43. J.L. Albacete, Particle multiplicities in Lead-Lead collisions at the LHC from non-linear evolution with running coupling, Phys. Rev. Lett. 99 (2007) 262301 [arXiv:0707.2545] [SPIRES].

    ADS  Google Scholar 

  44. E. Iancu and R. Venugopalan, T he color glass condensate and high energy scattering in QCD, hep-ph/0303204 [SPIRES].

  45. H. Weigert, Evolution at small x bj : The color glass condensate, Prog. Part. Nucl. Phys. 55 (2005) 461 [hep-ph/0501087] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. J. Jalilian-Marian and Y.V. Kovchegov, Saturation physics and deuteron gold collisions at RHIC, Prog. Part. Nucl. Phys. 56 (2006) 104 [hep-ph/0505052] [SPIRES].

    ADS  Google Scholar 

  47. A. Krasnitz, Y. Nara and R. Venugopalan, Gluon production in the color glass condensate model of collisions of ultrarelativistic finite nuclei, Nucl. Phys. A 717 (2003) 268 [hep-ph/0209269] [SPIRES].

    ADS  Google Scholar 

  48. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. T heor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  49. E. Witten, Anti-de Sitter space and holography, Adv. T heor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  50. Y. Burnier, M. Laine and M. Vepsäläinen, Dimensionally regularized Polyakov loop correlators in hot QCD, JHEP 01 (2010) 054 [arXiv:0911.3480] [SPIRES].

    ADS  Google Scholar 

  51. J. Noronha and A. Dumitru, The heavy quark potential as a function of shear viscosity at strong coupling, Phys. Rev. D 80 (2009) 014007 [arXiv:0903.2804] [SPIRES].

    ADS  Google Scholar 

  52. J .M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  53. D. Bak, A. Karch and L.G. Yaffe, Debye screening in strongly coupled N =4 supersymmetric Yang-Mills plasma, JHEP 08 (2007) 049 [arXiv:0705.0994] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  54. S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  55. J.L. Albacete, Heavy quark potential at finite temperature in AdS/CFT, Nucl. Phys. A 830 (2009) 311c [arXiv:0908.2541] [SPIRES].

    ADS  Google Scholar 

  56. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Heavy quark potential at finite temperature in AdS/CFT revisited, Phys. Rev. D 78 (2008) 115007 [arXiv:0807.4747] [SPIRES].

    ADS  Google Scholar 

  57. A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in the large-N limit at finite temperature, Phys. Lett. B 434 (1998) 36 [hep-th/9803137] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. C. Marquet, C. Roiesnel and S. Wallon, Virtual compton scattering off a spinless target in AdS/QCD, JHEP 04 (2010) 051 [arXiv:1002.0566] [SPIRES].

    ADS  Google Scholar 

  59. M.A. Betemps, V.P. Goncalves and J.T. de Santana Amaral, Diffractive deep inelastic scattering in an AdS/CFT inspired model: A phenomenological study, Phys. Rev. D 81 (2010) 094012 [arXiv:1001.3548] [SPIRES].

    ADS  Google Scholar 

  60. L. Cornalba and M.S. Costa, Saturation in deep inelastic scattering from AdS/CFT, Phys. Rev. D 78 (2008) 096010 [arXiv:0804.1562] [SPIRES].

    ADS  Google Scholar 

  61. L. Cornalba, M.S. Costa and J. Penedones, Eikonal methods in AdS/CFT: BFKL Pomeron at weak coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. L. Cornalba, M.S. Costa and J. Penedones, Deep inelastic scattering in conformal QCD, JHEP 03 (2010) 133 [arXiv:0911.0043] [SPIRES].

    ADS  Google Scholar 

  63. J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett. 88 (2002) 031601 [hep-th/0109174] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  64. J. Polchinski and M.J. Strassler, Deep inelastic scattering and gauge/string duality, JHEP 05 (2003) 012 [hep-th/0209211] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  65. J.-H. Gao and B.-W. Xiao, Nonforward compton scattering in AdS/CFT correspondence, Phys. Rev. D 81 (2010) 035008 [arXiv:0912.4333] [SPIRES].

    ADS  Google Scholar 

  66. E. Iancu and A.H. Mueller, Light-like mesons and deep inelastic scattering in finite-temperature AdS/CFT with flavor, JHEP 02 (2010) 023 [arXiv:0912.2238] [SPIRES].

    ADS  Google Scholar 

  67. F. Dominguez, Particle production in DIS off a shock wave in AdS, JHEP 09 (2010) 007 [arXiv:0912.1641] [SPIRES].

    ADS  Google Scholar 

  68. Y.V. Kovchegov, R-current DIS on a shock wave: beyond the eikonal approximation, arXiv:1005.0374 [SPIRES].

  69. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, DIS on a large nucleus in AdS/CFT, JHEP 07 (2008) 074 [arXiv:0806.1484] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  70. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, DIS in AdS, A IP Conf. Proc. 1105 (2009) 356 [arXiv:0811.0818] [SPIRES].

    ADS  Google Scholar 

  71. A.H. Mueller, A.I. Shoshi and B.-W. Xiao, Deep inelastic and dipole scattering on finite length hot \( \mathcal{N} = 4 \) SY M matter, Nucl. Phys. A 822 (2009) 20 [arXiv:0812.2897] [SPIRES].

    ADS  Google Scholar 

  72. C. Marquet and T. Renk, Jet quenching in the strongly-interacting quark-gluon plasma, Phys. Lett. B 685 (2010) 270 [arXiv:0908.0880] [SPIRES].

    ADS  Google Scholar 

  73. C.A. Ballon Bayona, H. Boschi-Filho and N.R.F. Braga, Deep inelastic scattering from gauge string duality in D3-D7 brane model, JHEP 09 (2008) 114 [arXiv:0807.1917] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  74. A. Taliotis, DIS from the AdS/CFT correspondence, Nucl. Phys. A 830 (2009) 299c [arXiv:0907.4204] [SPIRES].

    ADS  Google Scholar 

  75. M. Giordano and R. Peschanski, High energy bounds on soft N =4 SY M amplitudes from AdS/CFT, JHEP 05 (2010) 037 [arXiv:1003.2309] [SPIRES].

    ADS  Google Scholar 

  76. Y. Hatta, Relating e + e - annihilation to high energy scattering at weak and strong coupling, JHEP 11 (2008) 057 [arXiv:0810.0889] [SPIRES].

    ADS  Google Scholar 

  77. E. Avsar, E. Iancu, L. McLerran and D.N. Triantafyllopoulos, Shock waves and deep inelastic scattering within the gauge/gravity duality, JHEP 11 (2009) 105 [arXiv:0907.4604] [SPIRES].

    ADS  Google Scholar 

  78. L. Cornalba, M.S. Costa and J. Penedones, AdS black disk model for small-x DIS, Phys. Rev. Lett. 105 (2010) 072003 [arXiv:1001.1157] [SPIRES].

    ADS  Google Scholar 

  79. R.C. Brower, M. Djuric, I. Sarcevic and C.-I. Tan, String-gauge dual description of deep inelastic scattering at small-x, arXiv:1007.2259 [SPIRES].

  80. Y.V. Kovchegov, Z. Lu and A.H. Rezaeian, Comparing AdS/CFT calculations to HERA F 2 data, Phys. Rev. D 80 (2009) 074023 [arXiv:0906.4197] [SPIRES].

    ADS  Google Scholar 

  81. W.A. Horowitz and Y.V. Kovchegov, Shock treatment: heavy quark drag in a novel AdS geometry, Phys. Lett. B 680 (2009) 56 [arXiv:0904.2536] [SPIRES].

    ADS  Google Scholar 

  82. W.A. Horowitz and M. Gyulassy, Heavy quark jet tomography of Pb + Pb at LHC: AdS/CFT drag or pQCD energy loss?, Phys. Lett. B 666 (2008) 320 [arXiv:0706.2336] [SPIRES].

    ADS  Google Scholar 

  83. W.A. Horowitz, Shock treatment: heavy quark energy loss in a novel AdS/CFT geometry, Nucl. Phys. A 830 (2009) 773c [arXiv:0907.4845] [SPIRES].

    ADS  Google Scholar 

  84. S.S. Gubser, D.R. Gulotta, S.S. Pufu and F.D. Rocha, Gluon energy loss in the gauge-string duality, JHEP 10 (2008) 052 [arXiv:0803.1470] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  85. S.D. Avramis, K. Sfetsos and D. Zoakos, On the velocity and chemical-potential dependence of the heavy-quark interaction in N =4 SY M plasmas, Phys. Rev. D 75 (2007) 025009 [hep-th/0609079] [SPIRES].

    ADS  Google Scholar 

  86. C. Athanasiou, P.M. Chesler, H. Liu, D. Nickel and K. Rajagopal, Synchrotron radiation in strongly coupled conformal field theories, Phys. Rev. D 81 (2010) 126001 [arXiv:1001.3880] [SPIRES].

    ADS  Google Scholar 

  87. G. Beuf, C. Marquet and B.-W. Xiao, Heavy-quark energy loss and thermalization in a strongly coupled SY M plasma, Phys. Rev. D 80 (2009) 085001 [arXiv:0812.1051] [SPIRES].

    ADS  Google Scholar 

  88. K. Kajantie, T. Tahkokallio and J.-T. Yee, Thermodynamics of AdS/QCD, JHEP 01 (2007) 019 [hep-ph/0609254] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  89. K. Kajantie and T. Tahkokallio, Spherically expanding matter in AdS/CFT, Phys. Rev. D 75 (2007) 066003 [hep-th/0612226] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  90. K. Kajantie, J. Louko and T. Tahkokallio, Gravity dual of 1+1 dimensional Bjorken expansion, Phys. Rev. D 76 (2007) 106006 [arXiv:0705.1791] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  91. K. Kajantie, J. Louko and T. Tahkokallio, Gravity dual of conformal matter collisions in 1+1 dimensions, Phys. Rev. D 77 (2008) 066001 [arXiv:0801.0198] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  92. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric cllision of two shock waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  93. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling heavy ion collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  94. D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS5, JHEP 08 (2008) 027 [arXiv:0803.3226] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  95. R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  96. R.A. Janik, The dynamics of quark-gluon plasma and AdS/CFT, arXiv:1003.3291 [SPIRES].

  97. R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost- invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  98. M.P. Heller, R.A. Janik and R. Peschanski, Hydrodynamic flow of the quark-gluon plasma and gauge/gravity correspondence, Acta Phys. Polon. B 39 (2008) 3183 [arXiv:0811.3113] [SPIRES].

    ADS  Google Scholar 

  99. G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP 10 (2009) 043 [arXiv:0906.4423] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  100. R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [SPIRES].

    ADS  Google Scholar 

  101. D. Bak and R.A. Janik, From static to evolving geometries: R -charged hydrodynamics from supergravity, Phys. Lett. B 645 (2007) 303 [hep-th/0611304] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  102. S. Nakamura and S.-J. Sin, A holographic dual of hydrodynamics, JHEP 09 (2006) 020 [hep-th/0607123] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  103. E. Shuryak, S.-J. Sin and I. Zahed, A gravity dual of RHIC collisions, J. Korean Phys. Soc. 50 (2007) 384 [hep-th/0511199] [SPIRES].

    Google Scholar 

  104. S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions: I.Falling into the AdS, Phys. Rev. D 77 (2008) 085013 [hep-ph/0610168] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  105. M. Lublinsky and E. Shuryak, How much entropy is produced in strongly coupled quark-gluon plasma (sQGP) by dissipative effects?, Phys. Rev. C 76 (2007) 021901 [arXiv:0704.1647] [SPIRES].

    ADS  Google Scholar 

  106. I.Y. Aref’eva, Catalysis of black holes/wormholes formation in high energy collisions, Theor. Math. Phys. 161 (2009) 1647 [arXiv:0912.5481] [SPIRES].

    MATH  Google Scholar 

  107. O. Aharony, S. Minwalla and T. Wiseman, Plasma-balls in large-N gauge theories and localized black holes, Class. Quant. Grav. 23 (2006) 2171 [hep-th/0507219] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  108. S.S. Gubser, Symmetry constraints on generalizations of Bjorken flow, arXiv:1006.0006 [SPIRES].

  109. S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [SPIRES].

    ADS  Google Scholar 

  110. T. Springer, Second order hydrodynamics for a special class of gravity duals, Phys. Rev. D 79 (2009) 086003 [arXiv:0902.2566] [SPIRES].

    ADS  Google Scholar 

  111. T. Springer, Sound mode hydrodynamics from bulk scalar fields, Phys. Rev. D 79 (2009) 046003 [arXiv:0810.4354] [SPIRES].

    ADS  Google Scholar 

  112. J.I. Kapusta and T. Springer, Shear transport coefficients from gauge/gravity correspondence, Phys. Rev. D 78 (2008) 066017 [arXiv:0806.4175] [SPIRES].

    ADS  Google Scholar 

  113. H. Nastase, The RHIC fireball as a dual black hole, hep-th/0501068 [SPIRES].

  114. S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [SPIRES].

    ADS  Google Scholar 

  115. S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [SPIRES].

    ADS  Google Scholar 

  116. S. Lin and E. Shuryak, Grazing collisions of gravitational shock waves and entropy production in heavy ion collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [SPIRES].

    ADS  Google Scholar 

  117. Y.V. Kovchegov and S. Lin, Toward thermalization in heavy ion collisions at strong coupling, JHEP 03 (2010) 057 [arXiv:0911.4707] [SPIRES].

    ADS  Google Scholar 

  118. L. Alvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [SPIRES].

    ADS  Google Scholar 

  119. I.Y. Aref’eva, A.A. Bagrov and E.A. Guseva, Critical formation of trapped surfaces in the collision of non-expanding gravitational shock waves in de Sitter space-time, JHEP 12 (2009) 009 [arXiv:0905.1087] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  120. I.Y. Aref’eva, A.A. Bagrov and L.V. Joukovskaya, Critical trapped surfaces formation in the collision of ultrarelativistic charges in (A)dS, JHEP 03 (2010) 002 [arXiv:0909.1294] [SPIRES].

    ADS  Google Scholar 

  121. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  122. P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-fromequilibrium dynamics in N =4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [SPIRES].

    ADS  Google Scholar 

  123. A.J . Amsel, D. Marolf and A. Virmani, Collisions with black holes and deconfined plasmas, JHEP 04 (2008) 025 [arXiv:0712.2221] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  124. H. Nastase, AdS-CFT and the RHIC fireball, Prog. Theor. Phys. Suppl. 174 (2008) 274 [arXiv:0805.3579] [SPIRES].

    ADS  MATH  Google Scholar 

  125. S.B. Giddings and R.A. Porto, The gravitational S-matrix, Phys. Rev. D 81 (2010) 025002 [arXiv:0908.0004] [SPIRES].

    ADS  Google Scholar 

  126. S.B. Giddings, M. Schmidt-Sommerfeld and J.R. Andersen, High energy scattering in gravity and supergravity, arXiv:1005.5408 [SPIRES].

  127. D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  128. S.B. Giddings and V.S. Rychkov, Black holes from colliding wavepackets, Phys. Rev. D 70 (2004) 104026 [hep-th/0409131] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  129. M. Panero, Thermodynamics of the QCD plasma and the large-N limit, Phys. Rev. Lett. 103 (2009) 232001 [arXiv:0907.3719] [SPIRES].

    ADS  Google Scholar 

  130. U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [SPIRES].

    Google Scholar 

  131. U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [SPIRES].

    Google Scholar 

  132. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and gluon plasma dynamics in improved holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [SPIRES].

    ADS  Google Scholar 

  133. E. Kiritsis, Dissecting the string theory dual of QCD, Fortsch. Phys. 57 (2009) 396 [arXiv:0901.1772] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  134. J.D. Edelstein, J.P. Shock and D. Zoakos, The AdS/CFT correspondence and non-perturbative QCD, A IP Conf. Proc. 1116 (2009) 265 [arXiv:0901.2534] [SPIRES].

    ADS  Google Scholar 

  135. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  136. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    ADS  MATH  Google Scholar 

  137. P.D. D’Eath and P.N. Payne, Gravitational radiation in high speed black hole collisions. 1. Perturbation treatment of the axisymmetric speed of light collision, Phys. Rev. D 46 (1992) 658 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  138. P.D. D’Eath and P.N. Payne, Gravitational radiation in high speed black hole collisions. 2. Reduction to two independent variables and calculation of the second order news function, Phys. Rev. D 46 (1992) 675 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  139. P.D. D’Eath and P.N. Payne, Gravitational radiation in high speed black hole collisions. 3. Results and conclusions, Phys. Rev. D 46 (1992) 694 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  140. P.C. Aichelburg and R.U. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [SPIRES].

    ADS  Google Scholar 

  141. T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys. B 253 (1985) 173 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  142. M. Hotta and M. Tanaka, Shock wave geometry with nonvanishing cosmological constant, Class. Quant. Grav. 10 (1993) 307 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  143. S.W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. Lond. A 314 (1970) 529 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  144. S. Khlebnikov, M. Kruczenski and G. Michalogiorgakis, Shock waves in strongly coupled plasmas, arXiv:1004.3803 [SPIRES].

  145. K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys. B 436 (1995) 721 [hep-th/9408169] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  146. G. Beuf, Gravity dual of N =4 SY M theory with fast moving sources, Phys. Lett. B 686 (2010) 55 [arXiv:0903.1047] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  147. T. Lappi, Production of gluons in the classical field model for heavy ion collisions, Phys. Rev. C 67 (2003) 054903 [hep-ph/0303076] [SPIRES].

    ADS  Google Scholar 

  148. K. Fukushima, Initial fields and instability in the classical model of the heavy-ion collision, Phys. Rev. C 76 (2007) 021902 [Erratum ibid. C 77 (2007) 029901] [arXiv:0704.3625] [SPIRES].

    ADS  Google Scholar 

  149. R.J. Fries, J.I. Kapusta and Y. Li, Near-fields and initial energy density in the color glass condensate model, nucl-th/0604054 [SPIRES].

  150. T. Lappi and R. Venugopalan, Universality of the saturation scale and the initial eccentricity in heavy ion collisions, Phys. Rev. C 74 (2006) 054905 [nucl-th/0609021] [SPIRES].

    ADS  Google Scholar 

  151. W. Jas and S. Mrowczynski, Evolution of anisotropy of parton system from relativistic heavy-ion collisions, Phys. Rev. C 76 (2007) 044905 [arXiv:0706.2273] [SPIRES].

    ADS  Google Scholar 

  152. P.F. Kolb and U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy-ion collisions, nucl-th/0305084 [SPIRES].

  153. P.F. Kolb and U.W. Heinz, Emission angle dependent HBT at RHIC and beyond, Nucl. Phys. A 715 (2003) 653 [nucl-th/0208047] [SPIRES].

    ADS  Google Scholar 

  154. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [SPIRES].

    ADS  Google Scholar 

  155. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [SPIRES].

    ADS  Google Scholar 

  156. J. Hirn, N. Rius and V. Sanz, Geometric approach to condensates in holographic QCD, Phys. Rev. D 73 (2006) 085005 [hep-ph/0512240] [SPIRES].

    ADS  Google Scholar 

  157. J. Erlich, G.D. Kribs and I. Low, Emerging holography, Phys. Rev. D 73 (2006) 096001 [hep-th/0602110] [SPIRES].

    ADS  Google Scholar 

  158. J. Hirn and V. Sanz, Interpolating between low and high energy QCD via a 5D Yang-Mills model, JHEP 12 (2005) 030 [hep-ph/0507049] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  159. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [SPIRES].

    ADS  Google Scholar 

  160. H. Boschi-Filho and N.R.F. Braga, Gauge/string duality and scalar glueball mass ratios, JHEP 05 (2003) 009 [hep-th/0212207] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  161. S.J. Brodsky and G.F. de Teramond, Light-front hadron dynamics and AdS/CFT correspondence, Phys. Lett. B 582 (2004) 211 [hep-th/0310227] [SPIRES].

    ADS  Google Scholar 

  162. S. Hong, S. Yoon and M.J. Strassler, On the couplings of vector mesons in AdS/QCD, JHEP 04 (2006) 003 [hep-th/0409118] [SPIRES].

    ADS  Google Scholar 

  163. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. T heor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

    ADS  MATH  Google Scholar 

  164. T. Hambye, B. Hassanain, J. March-Russell and M. Schvellinger, On the Δ(I)= 1/2 rule in holographic QCD, Phys. Rev. D 74 (2006) 026003 [hep-ph/0512089] [SPIRES].

    ADS  Google Scholar 

  165. K. Ghoroku, N. Maru, M. Tachibana and M. Yahiro, Holographic model for hadrons in deformed AdS 5 background, Phys. Lett. B 633 (2006) 602 [hep-ph/0510334] [SPIRES].

    ADS  Google Scholar 

  166. N. Evans, A. Tedder and T. Waterson, Improving the infra-red of holographic descriptions of QCD, JHEP 01 (2007) 058 [hep-ph/0603249] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  167. S.K. Domokos and J .A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett. 99 (2007) 141602 [arXiv:0704.1604] [SPIRES].

    ADS  Google Scholar 

  168. H.J. Kwee and R.F. Lebed, Pion form factors in holographic QCD, JHEP 01 (2008) 027 [arXiv:0708.4054] [SPIRES].

    ADS  Google Scholar 

  169. H.R. Grigoryan and A.V. Radyushkin, Form factors and wave functions of vector mesons in holographic QCD, Phys. Lett. B 650 (2007) 421 [hep-ph/0703069] [SPIRES].

    ADS  Google Scholar 

  170. H.R. Grigoryan and A.V. Radyushkin, Pion form factor in chiral limit of hard-wall AdS/QCD model, Phys. Rev. D 76 (2007) 115007 [arXiv:0709.0500] [SPIRES].

    ADS  Google Scholar 

  171. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products, fifth edition, Academic Press, San Diego U.S.A. (1994).

    MATH  Google Scholar 

  172. A. Papapetrou, Lectures on general relativity, D. Reidel publishing Company, Holland (1974).

    MATH  Google Scholar 

  173. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Vacua, propagators and holographic probes in AdS/CFT, JHEP 01 (1999) 002 [hep-th/9812007] [SPIRES].

    ADS  Google Scholar 

  174. Y.V. Kovchegov and D.H. Rischke, Classical gluon radiation in ultrarelativistic nucleus nucleus collisions, Phys. Rev. C 56 (1997) 1084 [hep-ph/9704201] [SPIRES].

    ADS  Google Scholar 

  175. A. Taliotis, Evolving geometries in general relativity, in Partial Fulfillment of the Requirements for the Degree MASTER of Science in the Department of Mathematics of The Ohio State University arXiv:1007.1452 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Taliotis.

Additional information

ArXiv ePrint: 1004.3500v2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taliotis, A. Heavy ion collisions with transverse dynamics from evolving AdS geometries. J. High Energ. Phys. 2010, 102 (2010). https://doi.org/10.1007/JHEP09(2010)102

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)102

Keywords

Navigation