Skip to main content
Log in

Renormalization-group improved predictions for top-quark pair production at hadron colliders

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Precision predictions for phenomenologically interesting observables such as the \( t\bar{t} \) invariant mass distribution and forward-backward asymmetry in top-quark pair production at hadron colliders require control over the differential cross section in perturbative QCD. In this paper we improve existing calculations of the doubly differential cross section in the invariant mass and scattering angle by using techniques from soft-collinear effective theory to perform an NNLL resummation of threshold logarithms, which become large when the invariant mass M of the top-quark pair approaches the partonic center-of-mass energy \( \sqrt {{\hat{s}}} \). We also derive an approximate formula for the differential cross section at NNLO in fixed-order perturbation theory, which completely determines the coefficients multiplying the singular plus distributions in the variable \( \left( {1 - {{{{M^2}}} \left/ {{\hat{s}}} \right.}} \right) \). We then match our results in the threshold region with the exact results at NLO in fixed-order perturbation theory, and perform a numerical analysis of the invariant mass distribution, the total cross section, and the forward-backward asymmetry. We argue that these are the most accurate predictions available for these observables at present. Using MSTW2008NNLO parton distribution functions (PDFs) along with α s (M Z ) = 0.117 and m t = 173.1 GeV, we obtain for the inclusive production cross sections at the Tevatron and LHC the values \( {{{\sigma }}_{\text{Tevatron}}} = \left( {6.30\pm 0.19_{ - 0.23}^{ + 0.31}} \right){\text{pb}} \) and σ LHC = (149 ± 7 ± 8) pb, where the first error results from scale variations while the second reflects PDF uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tevatron Electroweak Working Group collaboration, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [SPIRES].

  2. W. Bernreuther, Top quark physics at the LHC, J. Phys. G 35 (2008) 083001 [arXiv:0805.1333] [SPIRES].

    ADS  Google Scholar 

  3. R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [SPIRES].

    ADS  Google Scholar 

  4. V. Barger, T. Han and D.G.E. Walker, Top Quark Pairs at High Invariant Mass: A Model-Independent Discriminator of New Physics at the LHC, Phys. Rev. Lett. 100 (2008) 031801 [hep-ph/0612016] [SPIRES].

    ADS  Google Scholar 

  5. U. Baur and L.H. Orr, Searching for \( t\bar{t} \) Resonances at the Large Hadron Collider, Phys. Rev. D 77 (2008) 114001 [arXiv:0803.1160] [SPIRES].

    ADS  Google Scholar 

  6. CDF collaboration, T. Aaltonen et al., Search for resonant \( t\bar{t} \) production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \text{-} TeV \), Phys. Rev. Lett. 100 (2008) 231801 [arXiv:0709.0705] [SPIRES].

    ADS  Google Scholar 

  7. CDF collaboration, T. Aaltonen et al., Limits on the production of narrow \( t\bar{t} \) resonances in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \text{-} TeV \), Phys. Rev. D 77 (2008) 051102 [arXiv:0710.5335] [SPIRES].

    ADS  Google Scholar 

  8. D0 collaboration, V.M. Abazov et al., Search for \( t\bar{t} \) resonances in the lepton plus jets final state in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \text{-} TeV \), Phys. Lett. B 668 (2008) 98 [arXiv:0804.3664] [SPIRES].

    ADS  Google Scholar 

  9. CDF collaboration, T. Aaltonen et al., First Measurement of the \( t\bar{t} \) Differential Cross Section \( {{{d\sigma }} \left/ {{d{M_{t\bar{t}}}}} \right.} \) in \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [SPIRES].

    ADS  Google Scholar 

  10. D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].

    ADS  Google Scholar 

  11. CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \( p\bar{p} \) Collisions at sqrts =1.96 TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].

    ADS  Google Scholar 

  12. CDF collaboration, Measurement of the Forward-Backward Asymmetry in \( t\bar{t} \) Production in 3.2 fb −1 of \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96\;TeV \), CDF Public Report No. 9724 (2009).

  13. P. Nason, S. Dawson and R.K. Ellis, The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions, Nucl. Phys. B 303 (1988) 607 [SPIRES].

    ADS  Google Scholar 

  14. W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD Corrections to Heavy Quark Production in \( p\bar{p} \) Collisions, Phys. Rev. D 40 (1989) 54 [SPIRES].

    ADS  Google Scholar 

  15. W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [SPIRES].

    ADS  Google Scholar 

  16. M. Czakon and A. Mitov, Inclusive Heavy Flavor Hadroproduction in NLO QCD: the Exact Analytic Result, Nucl. Phys. B 824 (2010) 111 [arXiv:0811.4119] [SPIRES].

    ADS  Google Scholar 

  17. P. Nason, S. Dawson and R.K. Ellis, The One Particle Inclusive Differential Cross-Section for Heavy Quark Production in Hadronic Collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [SPIRES].

    ADS  Google Scholar 

  18. M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [SPIRES].

    ADS  Google Scholar 

  19. S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Top quark distributions in hadronic collisions, Phys. Lett. B 351 (1995) 555 [hep-ph/9503213] [SPIRES].

    ADS  Google Scholar 

  20. J.H. Kühn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [SPIRES].

    ADS  Google Scholar 

  21. J.H. Kühn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [SPIRES].

    ADS  Google Scholar 

  22. M. Czakon, A. Mitov and S. Moch, Heavy-quark production in massless quark scattering at two loops in QCD, Phys. Lett. B 651 (2007) 147 [arXiv:0705.1975] [SPIRES].

    ADS  Google Scholar 

  23. M. Czakon, A. Mitov and S. Moch, Heavy-quark production in gluon fusion at two loops in QCD, Nucl. Phys. B 798 (2008) 210 [arXiv:0707.4139] [SPIRES].

    ADS  Google Scholar 

  24. M. Czakon, Tops from Light Quarks: Full Mass Dependence at Two-Loops in QCD, Phys. Lett. B 664 (2008) 307 [arXiv:0803.1400] [SPIRES].

    ADS  Google Scholar 

  25. R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maître and C. Studerus, Two-Loop Fermionic Corrections to Heavy-Quark Pair Production: The Quark-Antiquark Channel, JHEP 07 (2008) 129 [arXiv:0806.2301] [SPIRES].

    ADS  Google Scholar 

  26. R. Bonciani, A. Ferroglia, T. Gehrmann and C. Studerus, Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel, JHEP 08 (2009) 067 [arXiv:0906.3671] [SPIRES].

    ADS  Google Scholar 

  27. J.G. Korner, Z. Merebashvili and M. Rogal, NNLO \( \mathcal{O}\left( {\alpha_s^4} \right) \) results for heavy quark pair production in quark-antiquark collisions: The One-loop squared contributions, Phys. Rev. D 77 (2008) 094011 [arXiv:0802.0106] [SPIRES].

    ADS  Google Scholar 

  28. C. Anastasiou and S.M. Aybat, The one-loop gluon amplitude for heavy-quark production at NNLO, Phys. Rev. D 78 (2008) 114006 [arXiv:0809.1355] [SPIRES].

    ADS  Google Scholar 

  29. B. Kniehl, Z. Merebashvili, J.G. Korner and M. Rogal, Heavy quark pair production in gluon fusion at next-to-next-to-leading \( \mathcal{O}\left( {\alpha_s^4} \right) \) order: One-loop, Phys. Rev. D 78 (2008) 094013 [arXiv:0809.3980] [SPIRES].

    ADS  Google Scholar 

  30. S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to t anti-t + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [SPIRES].

    ADS  Google Scholar 

  31. G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [SPIRES].

    ADS  Google Scholar 

  32. S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes, Nucl. Phys. B 327 (1989) 323 [SPIRES].

    ADS  Google Scholar 

  33. E. Laenen, J. Smith and W.L. van Neerven, All order resummation of soft gluon contributions to heavy quark production in hadron hadron collisions, Nucl. Phys. B 369 (1992) 543 [SPIRES].

    ADS  Google Scholar 

  34. E. Laenen, J. Smith and W.L. van Neerven, Top quark production cross-section, Phys. Lett. B 321 (1994) 254 [hep-ph/9310233] [SPIRES].

    ADS  Google Scholar 

  35. E.L. Berger and H. Contopanagos, Perturbative gluon resummation of the top quark production cross-section, Phys. Lett. B 361 (1995) 115 [hep-ph/9507363] [SPIRES].

    ADS  Google Scholar 

  36. E.L. Berger and H. Contopanagos, The Perturbative resummed series for top quark production in hadron reactions, Phys. Rev. D 54 (1996) 3085 [hep-ph/9603326] [SPIRES].

    ADS  Google Scholar 

  37. E.L. Berger and H. Contopanagos, Threshold resummation of the total cross-section for heavy quark production in hadronic collisions, Phys. Rev. D 57 (1998) 253 [hep-ph/9706206] [SPIRES].

    ADS  Google Scholar 

  38. S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The Top cross-section in hadronic collisions, Phys. Lett. B 378 (1996) 329 [hep-ph/9602208] [SPIRES].

    ADS  Google Scholar 

  39. R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy-quark hadroproduction cross-section, Nucl. Phys. B 529 (1998) 424 [Erratum ibid. B 803 (2008) 234] [hep-ph/9801375] [SPIRES].

    ADS  Google Scholar 

  40. S. Moch and P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders, Phys. Rev. D 78 (2008) 034003 [arXiv:0804.1476] [SPIRES].

    ADS  Google Scholar 

  41. M. Czakon and A. Mitov, On the Soft-Gluon Resummation in Top Quark Pair Production at Hadron Colliders, Phys. Lett. B 680 (2009) 154 [arXiv:0812.0353] [SPIRES].

    ADS  Google Scholar 

  42. U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [SPIRES].

    ADS  Google Scholar 

  43. M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: all-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [SPIRES].

    ADS  Google Scholar 

  44. M. Czakon, A. Mitov and G.F. Sterman, Threshold Resummation for Top-Pair Hadroproduction to Next-to-Next-to-Leading Log, Phys. Rev. D 80 (2009) 074017 [arXiv:0907.1790] [SPIRES].

    ADS  Google Scholar 

  45. M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, Threshold expansion of the \( gg\left( {q\bar{q}} \right) \to Q\bar{Q} + X \) cross section at \( \mathcal{O}\left( {\alpha_s^4} \right) \), Phys. Lett. B 690 (2010) 483 [arXiv:0911.5166] [SPIRES].

    ADS  Google Scholar 

  46. N. Kidonakis and G.F. Sterman, Subleading logarithms in QCD hard scattering, Phys. Lett. B 387 (1996) 867 [SPIRES].

    ADS  Google Scholar 

  47. N. Kidonakis and G.F. Sterman, Resummation for QCD hard scattering, Nucl. Phys. B 505 (1997) 321 [hep-ph/9705234] [SPIRES].

    ADS  Google Scholar 

  48. A. Banfi and E. Laenen, Joint resummation for heavy quark production, Phys. Rev. D 71 (2005) 034003 [hep-ph/0411241] [SPIRES].

    ADS  Google Scholar 

  49. L.G. Almeida, G.F. Sterman and W. Vogelsang, Threshold Resummation for the Top Quark Charge Asymmetry, Phys. Rev. D 78 (2008) 014008 [arXiv:0805.1885] [SPIRES].

    ADS  Google Scholar 

  50. N. Kidonakis, High-order corrections and subleading logarithms for top quark production, Phys. Rev. D 64 (2001) 014009 [hep-ph/0010002] [SPIRES].

    ADS  MATH  Google Scholar 

  51. N. Kidonakis, E. Laenen, S. Moch and R. Vogt, Sudakov resummation and finite order expansions of heavy quark hadroproduction cross sections, Phys. Rev. D 64 (2001) 114001 [hep-ph/0105041] [SPIRES].

    ADS  Google Scholar 

  52. N. Kidonakis and R. Vogt, Next-to-next-to-leading order soft gluon corrections in top quark hadroproduction, Phys. Rev. D 68 (2003) 114014 [hep-ph/0308222] [SPIRES].

    ADS  Google Scholar 

  53. N. Kidonakis and R. Vogt, The Theoretical top quark cross section at the Tevatron and the LHC, Phys. Rev. D 78 (2008) 074005 [arXiv:0805.3844] [SPIRES].

    ADS  Google Scholar 

  54. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [SPIRES].

    ADS  Google Scholar 

  55. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [SPIRES].

    ADS  Google Scholar 

  56. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, T hreshold expansion at order α s 4 for the \( t\bar{t} \) invariant mass distribution at hadron colliders, Phys. Lett. B 687 (2010) 331 [arXiv:0912.3375] [SPIRES].

    ADS  Google Scholar 

  57. N. Kidonakis, G. Oderda and G.F. Sterman, Threshold resummation for dijet cross sections, Nucl. Phys. B 525 (1998) 299 [hep-ph/9801268] [SPIRES].

    ADS  Google Scholar 

  58. N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [SPIRES].

    ADS  Google Scholar 

  59. E. Laenen, G. Oderda and G.F. Sterman, Resummation of threshold corrections for single particle inclusive cross-sections, Phys. Lett. B 438 (1998) 173 [hep-ph/9806467] [SPIRES].

    ADS  Google Scholar 

  60. S. Catani, M.L. Mangano and P. Nason, Sudakov resummation for prompt photon production in hadron collisions, JHEP 07 (1998) 024 [hep-ph/9806484] [SPIRES].

    ADS  Google Scholar 

  61. J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [SPIRES].

    Google Scholar 

  62. T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [SPIRES].

    ADS  Google Scholar 

  63. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].

    ADS  Google Scholar 

  64. T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [SPIRES].

    ADS  Google Scholar 

  65. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [SPIRES].

    ADS  Google Scholar 

  66. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [SPIRES].

    ADS  Google Scholar 

  67. T. Becher and M.D. Schwartz, Direct photon production with effective field theory, JHEP 02 (2010) 040 [arXiv:0911.0681] [SPIRES].

    ADS  Google Scholar 

  68. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [SPIRES].

    ADS  Google Scholar 

  69. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-Collinear Factorization in Effective Field Theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].

    ADS  Google Scholar 

  70. M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft-collinear effective theory and heavy-to-light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [SPIRES].

    ADS  Google Scholar 

  71. M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [SPIRES].

    ADS  Google Scholar 

  72. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top Jets in the Peak Region: Factorization Analysis with NLL Resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [SPIRES].

    ADS  Google Scholar 

  73. C.W. Bauer and M.D. Schwartz, Event generation from effective field theory, Phys. Rev. D 76 (2007) 074004 [hep-ph/0607296] [SPIRES].

    ADS  Google Scholar 

  74. T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021] [SPIRES].

    ADS  Google Scholar 

  75. R.J. Hill and M. Neubert, Spectator interactions in soft-collinear effective theory., Nucl. Phys. B 657 (2003) 229 [hep-ph/0211018] [SPIRES].

    ADS  Google Scholar 

  76. T. Becher, R.J. Hill and M. Neubert, Soft-collinear messengers: A new mode in soft-collinear effective theory, Phys. Rev. D 69 (2004) 054017 [hep-ph/0308122] [SPIRES].

    ADS  Google Scholar 

  77. S. Catani and M.H. Seymour, The Dipole Formalism for the Calculation of QCD Jet Cross Sections at Next-to-Leading Order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [SPIRES].

    ADS  Google Scholar 

  78. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [SPIRES].

    ADS  Google Scholar 

  79. T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  80. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].

  81. G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [SPIRES].

    ADS  Google Scholar 

  82. S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in photon - hadron collisions, Nucl. Phys. B 412 (1994) 225 [hep-ph/9306337] [SPIRES].

    ADS  Google Scholar 

  83. V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [SPIRES].

    Google Scholar 

  84. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [SPIRES].

    ADS  Google Scholar 

  85. Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [SPIRES].

    ADS  Google Scholar 

  86. S.W. Bosch, B.O. Lange, M. Neubert and G. Paz, Factorization and shape-function effects in inclusive B-meson decays, Nucl. Phys. B 699 (2004) 335 [hep-ph/0402094] [SPIRES].

    ADS  Google Scholar 

  87. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Uncertainties on α S in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [SPIRES].

    ADS  Google Scholar 

  88. J.M. Campbell and R.K. Ellis, Radiative corrections to \( Zb\bar{b} \) production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [SPIRES].

    ADS  Google Scholar 

  89. A. Czarnecki and K. Melnikov, Two-loop QCD corrections to the heavy quark pair production cross section in e + e annihilation near the threshold, Phys. Rev. lett. 80 (1998) 2531 [hep-ph/9712222] [SPIRES].

    ADS  Google Scholar 

  90. M. Beneke, A. Signer and V.A. Smirnov, Top quark production near threshold and the top quark mass, Phys. Lett. B 454 (1999) 137 [hep-ph/9903260] [SPIRES].

    ADS  Google Scholar 

  91. A. Czarnecki and K. Melnikov, Top quark threshold production at a gamma gamma collider at next-to-next-to-leading order, Phys. Rev. D 65 (2002) 051501 [hep-ph/0108233] [SPIRES].

    ADS  Google Scholar 

  92. CDF collaboration, Combination of CDF top quark pair production cross section measurements with up to 4.6 fb −1, CDF Public Report No. 9913 (2009).

  93. W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [SPIRES].

    ADS  Google Scholar 

  94. O. Antunano, J.H. Kühn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].

    ADS  Google Scholar 

  95. P.H. Frampton, J. Shu and K. Wang, A xigluon as Possible Explanation for \( p\bar{p} \to t\bar{t} \) Forward-Backward Asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].

    ADS  Google Scholar 

  96. J. Shu, T.M.P. Tait and K. Wang, Explorations of the Top Quark Forward-Backward Asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].

    ADS  Google Scholar 

  97. I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].

    ADS  Google Scholar 

  98. J. Cao, Z. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [SPIRES].

    ADS  Google Scholar 

  99. Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-Backward Asymmetry of Top Quark Pair Production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].

    ADS  Google Scholar 

  100. D0 collaboration, V.M. Abazov et al., Combination of ttbar cross section measurements and constraints on the mass of the top quark and its decays into charged Higgs bosons, Phys. Rev. D 80 (2009) 071102 [arXiv:0903.5525] [SPIRES].

    ADS  Google Scholar 

  101. I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, The Pole mass of the heavy quark. Perturbation theory and beyond, Phys. Rev. D 50 (1994) 2234 [hep-ph/9402360] [SPIRES].

    ADS  Google Scholar 

  102. M. Beneke and V.M. Braun, Heavy quark effective theory beyond perturbation theory: Renormalons, the pole mass and the residual mass term, Nucl. Phys. B 426 (1994) 301 [hep-ph/9402364] [SPIRES].

    ADS  Google Scholar 

  103. N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, T hree loop relation of quark (modified) ms and pole masses, Z. Phys. C 48 (1990) 673 [SPIRES].

    ADS  Google Scholar 

  104. J. Fleischer, F. Jegerlehner, O.V. Tarasov and O.L. Veretin, Two-loop QCD corrections of the massive fermion propagator, Nucl. Phys. B 539 (1999) 671 [Erratum ibid. B 571 (2000) 511] [hep-ph/9803493] [SPIRES].

    ADS  Google Scholar 

  105. K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α s 3, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [SPIRES].

    ADS  Google Scholar 

  106. M. Neubert, Renormalization-group improved calculation of the BX s γ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [SPIRES].

    ADS  Google Scholar 

  107. A.J. Buras, M. Jamin, M.E. Lautenbacher and P.H. Weisz, Effective Hamiltonians for ΔS = 1 and ΔB = 1 nonleptonic decays beyond the leading logarithmic approximation, Nucl. Phys. B 370 (1992) 69 [Addendum ibid. B 375 (1992) 501] [SPIRES].

    ADS  Google Scholar 

  108. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [SPIRES].

    ADS  Google Scholar 

  109. S. Moch, J.A.M. Vermaseren and A. Vogt, T he three-loop splitting functions in QCD: T he non-singlet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  110. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [SPIRES].

    ADS  Google Scholar 

  111. G.P. Korchemsky and A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [SPIRES].

    ADS  Google Scholar 

  112. N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Lin Yang.

Additional information

ArXiv ePrint: 1003.5827

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrens, V., Ferroglia, A., Neubert, M. et al. Renormalization-group improved predictions for top-quark pair production at hadron colliders. J. High Energ. Phys. 2010, 97 (2010). https://doi.org/10.1007/JHEP09(2010)097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)097

Keywords

Navigation