Skip to main content
Log in

Neutrino mixing angles in sequential dominance to NLO and NNLO

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Neutrinos with hierarchical masses and two large mixing angles may naturally originate from sequential dominance (SD). Within this framework we present analytic expressions for the neutrino mixing angles including the next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) corrections arising from the second lightest and lightest neutrino masses. The analytic results for neutrino mixing angles in SD presented here, including the NLO and NNLO corrections, are applicable to a wide class of models and may provide useful insights when confronting the models with data from high precision neutrino experiments. We also point out that for special cases of SD corresponding to form dominance (FD) the NLO and NNLO corrections both vanish. For example we study tri-bimaximal (TB) mixing via constrained sequential dominance (CSD) which involves only a NNLO correction and tri-bimaximal-reactor (TBR) mixing via partially constrained sequential dominance (PCSD) which involves a NLO correction suppressed by the small reactor angle and show that the analytic results have good agreement with the numerical results for these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  2. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Sanibel Talk, CALT-68-709, Feb. 1979, and in Supergravity, North Holland, Amsterdam (1979).

  3. T. Yanagida, Horizontal symmetry and masses of neutrinos, in proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, KEK, Japan, 1979.

    Google Scholar 

  4. S.L. Glashow, Quarks and leptons, Cargese Lectures (1979).

  5. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  6. J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [SPIRES].

    ADS  Google Scholar 

  7. S.F. King, Atmospheric and solar neutrinos with a heavy singlet, Phys. Lett. B 439 (1998) 350 [hep-ph/9806440] [SPIRES].

    ADS  Google Scholar 

  8. S.F. King, Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 562 (1999) 57 [hep-ph/9904210] [SPIRES].

    Article  ADS  Google Scholar 

  9. G. Altarelli, F. Feruglio and I. Masina, Large neutrino mixing from small quark and lepton mixings, Phys. Lett. B 472 (2000) 382 [hep-ph/9907532] [SPIRES].

    ADS  Google Scholar 

  10. S.F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 576 (2000) 85 [hep-ph/9912492] [SPIRES].

    Article  ADS  Google Scholar 

  11. S. Lavignac, I. Masina and C.A. Savoy, Large solar angle and seesaw mechanism: A bottom-up perspective, Nucl. Phys. B 633 (2002) 139 [hep-ph/0202086] [SPIRES].

    Article  ADS  Google Scholar 

  12. S.F. King, Constructing the large mixing angle MNS matrix in see-saw models with right-handed neutrino dominance, JHEP 09 (2002) 011 [hep-ph/0204360] [SPIRES].

    Article  ADS  Google Scholar 

  13. S.F. King, Leptogenesis-MNS link in unified models with natural neutrino mass hierarchy, Phys. Rev. D 67 (2003) 113010 [hep-ph/0211228] [SPIRES].

    ADS  Google Scholar 

  14. S. Antusch and S.F. King, Sequential dominance, New J. Phys. 6 (2004) 110 [hep-ph/0405272] [SPIRES].

    Article  ADS  Google Scholar 

  15. N. Haba, R. Takahashi, M. Tanimoto and K. Yoshioka, Tri-bimaximal Mixing from Cascades, Phys. Rev. D 78 (2008) 113002 [arXiv:0804.4055] [SPIRES].

    ADS  Google Scholar 

  16. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future Neutrino Factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].

    Article  ADS  Google Scholar 

  17. M.-C. Chen and S.F. King, A 4 See-Saw Models and Form Dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Antusch, L.E. Ibáñez and T. Macri, Neutrino Masses and Mixings from String Theory Instantons, JHEP 09 (2007) 087 [arXiv:0706.2132] [SPIRES].

    Article  ADS  Google Scholar 

  19. S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [SPIRES].

    Article  ADS  Google Scholar 

  20. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  21. P.F. Harrison and W.G. Scott, Symmetries and generalisations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [SPIRES].

    ADS  Google Scholar 

  22. P.F. Harrison and W.G. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. L. Wolfenstein, Oscillations Among Three Neutrino Types and CP-violation, Phys. Rev. D 18 (1978) 958 [SPIRES].

    ADS  Google Scholar 

  24. C.S. Lam, Symmetry of Lepton Mixing, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665] [SPIRES].

    ADS  Google Scholar 

  25. C.S. Lam, Determining Horizontal Symmetry from Neutrino Mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [SPIRES].

    Article  ADS  Google Scholar 

  26. C.S. Lam, The Unique Horizontal Symmetry of Leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [SPIRES].

    ADS  Google Scholar 

  27. S.F. King and C. Luhn, On the origin of neutrino flavour symmetry, JHEP 10 (2009) 093 [arXiv:0908.1897] [SPIRES].

    Article  ADS  Google Scholar 

  28. W. Grimus and L. Lavoura, S 3 × Z 2 model for neutrino mass matrices, JHEP 08 (2005) 013 [hep-ph/0504153] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. W. Grimus and L. Lavoura, A model realizing the Harrison-Perkins-Scott lepton mixing matrix, JHEP 01 (2006) 018 [hep-ph/0509239] [SPIRES].

    Article  ADS  Google Scholar 

  30. R.N. Mohapatra, S. Nasri and H.-B. Yu, S 3 symmetry and tri-bimaximal mixing, Phys. Lett. B 639 (2006) 318 [hep-ph/0605020] [SPIRES].

    ADS  Google Scholar 

  31. Y. Koide, S 3 symmetry and neutrino masses and mixings, Eur. Phys. J. C 50 (2007) 809 [hep-ph/0612058] [SPIRES].

    Article  ADS  Google Scholar 

  32. M. Mitra and S. Choubey, Lepton Masses in a Minimal Model with Triplet Higgs and S 3 × Z 4 Flavor Symmetry, Phys. Rev. D 78 (2008) 115014 [arXiv:0806.3254] [SPIRES].

    ADS  Google Scholar 

  33. W. Grimus and L. Lavoura, A discrete symmetry group for maximal atmospheric neutrino mixing, Phys. Lett. B 572 (2003) 189 [hep-ph/0305046] [SPIRES].

    ADS  Google Scholar 

  34. A. Adulpravitchai, A. Blum and C. Hagedorn, A Supersymmetric D4 Model for mu-tau Symmetry, JHEP 03 (2009) 046 [arXiv:0812.3799] [SPIRES].

    Article  ADS  Google Scholar 

  35. H. Ishimori et al., D4 Flavor Symmetry for Neutrino Masses and Mixing, Phys. Lett. B 662 (2008) 178 [arXiv:0802.2310] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. H. Ishimori et al., Soft supersymmetry breaking terms from D4 × Z 2 lepton flavor symmetry, Phys. Rev. D 77 (2008) 115005 [arXiv:0803.0796] [SPIRES].

    ADS  Google Scholar 

  37. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].

    ADS  Google Scholar 

  38. E. Ma, Tribimaximal neutrino mixing from a supersymmetric model with A 4 family symmetry, Phys. Rev. D 73 (2006) 057304 [hep-ph/0511133] [SPIRES].

    ADS  Google Scholar 

  39. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].

    Article  ADS  Google Scholar 

  40. K.S. Babu and X.-G. He, Model of geometric neutrino mixing, hep-ph/0507217 [SPIRES].

  41. G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A4 and the Modular Symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [SPIRES].

    Article  ADS  Google Scholar 

  43. M. Hirsch, A.S. Joshipura, S. Kaneko and J.W.F. Valle, Predictive flavour symmetries of the neutrino mass matrix, Phys. Rev. Lett. 99 (2007) 151802 [hep-ph/0703046] [SPIRES].

    Article  ADS  Google Scholar 

  44. M. Honda and M. Tanimoto, Deviation from tri-bimaximal neutrino mixing in A4 flavor symmetry, Prog. Theor. Phys. 119 (2008) 583 [arXiv:0801.0181] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  45. Y. Lin, A predictive A 4 model, Charged Lepton Hierarchy and Tri-bimaximal Sum Rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [SPIRES].

    Article  ADS  Google Scholar 

  46. M.-C. Chen and S.F. King, A 4 See-Saw Models and Form Dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. G. Altarelli and D. Meloni, A Simplest A 4 Model for Tri-Bimaximal Neutrino Mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [SPIRES].

    ADS  Google Scholar 

  48. Y. Koide, S 4 Flavor Symmetry Embedded into SU(3) and Lepton Masses and Mixing, JHEP 08 (2007) 086 [arXiv:0705.2275] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. H. Ishimori, T. Kobayashi, H. Okada, Y. Shimizu and M. Tanimoto, Lepton Flavor Model from Δ(54) Symmetry, JHEP 04 (2009) 011 [arXiv:0811.4683] [SPIRES].

    Article  ADS  Google Scholar 

  50. J. Kubo, A. Mondragon, M. Mondragon and E. Rodriguez-Jauregui, The flavor symmetry, Prog. Theor. Phys. 109 (2003) 795 [Erratum ibid. 114 (2005) 287] [hep-ph/0302196] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  51. S.-L. Chen, M. Frigerio and E. Ma, Large neutrino mixing and normal mass hierarchy: A discrete understanding, Phys. Rev. D 70 (2004) 073008 [Erratum ibid. D 70 (2004) 079905] [hep-ph/0404084] [SPIRES].

    ADS  Google Scholar 

  52. F. Feruglio and Y. Lin, Fermion Mass Hierarchies and Flavour Mixing from a Minimal Discrete Symmetry, Nucl. Phys. B 800 (2008) 77 [arXiv:0712.1528] [SPIRES].

    Article  ADS  Google Scholar 

  53. A. Blum, C. Hagedorn and M. Lindner, Fermion Masses and Mixings from Dihedral Flavor Symmetries with Preserved Subgroups, Phys. Rev. D 77 (2008) 076004 [arXiv:0709.3450] [SPIRES].

    ADS  Google Scholar 

  54. A. Blum, C. Hagedorn and A. Hohenegger, θ C from the Dihedral Flavor Symmetries D 7 and D 14, JHEP 03 (2008) 070 [arXiv:0710.5061] [SPIRES].

    Article  ADS  Google Scholar 

  55. A. Blum and C. Hagedorn, The Cabibbo Angle in a Supersymmetric D14 Model, Nucl. Phys. B 821 (2009) 327 [arXiv:0902.4885] [SPIRES].

    Article  ADS  Google Scholar 

  56. M. Frigerio, S. Kaneko, E. Ma and M. Tanimoto, Quaternion family symmetry of quarks and leptons, Phys. Rev. D 71 (2005) 011901 [hep-ph/0409187] [SPIRES].

    ADS  Google Scholar 

  57. K.S. Babu and J. Kubo, Dihedral families of quarks, leptons and Higgses, Phys. Rev. D 71 (2005) 056006 [hep-ph/0411226] [SPIRES].

    ADS  Google Scholar 

  58. Y. Kajiyama, E. Itou and J. Kubo, Nonabelian discrete family symmetry to soften the SUSY flavor problem and to suppress proton decay, Nucl. Phys. B 743 (2006) 74 [hep-ph/0511268] [SPIRES].

    ADS  Google Scholar 

  59. K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].

    ADS  Google Scholar 

  60. F. Bazzocchi, S. Morisi and M. Picariello, Embedding A 4 into left-right flavor symmetry: Tribimaximal neutrino mixing and fermion hierarchy, Phys. Lett. B 659 (2008) 628 [arXiv:0710.2928] [SPIRES].

    ADS  Google Scholar 

  61. S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [SPIRES].

    ADS  Google Scholar 

  62. A. Aranda, C.D. Carone and R.F. Lebed, Maximal neutrino mixing from a minimal flavor symmetry, Phys. Rev. D 62 (2000) 016009 [hep-ph/0002044] [SPIRES].

    ADS  Google Scholar 

  63. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal Neutrino Mixing and Quark Masses from a Discrete Flavour Symmetry, Nucl. Phys. B 775 (2007) 120 [hep-ph/0702194] [SPIRES].

    Article  ADS  Google Scholar 

  64. M.-C. Chen and K.T. Mahanthappa, CKM and Tri-bimaximal MNS Matrices in a SU(5) ×(d) T Model, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714] [SPIRES].

    ADS  Google Scholar 

  65. P.H. Frampton and T.W. Kephart, Flavor Symmetry for Quarks and Leptons, JHEP 09 (2007) 110 [arXiv:0706.1186] [SPIRES].

    Article  ADS  Google Scholar 

  66. A. Aranda, Neutrino mixing from the double tetrahedral group T′, Phys. Rev. D 76 (2007) 111301 [arXiv:0707.3661] [SPIRES].

    ADS  Google Scholar 

  67. P.H. Frampton and S. Matsuzaki, T′ Predictions of PMNS and CKM Angles, Phys. Lett. B 679 (2009) 347 [arXiv:0902.1140] [SPIRES].

    ADS  Google Scholar 

  68. C. Hagedorn, M. Lindner and R.N. Mohapatra, S 4 flavor symmetry and fermion masses: Towards a grand unified theory of flavor, JHEP 06 (2006) 042 [hep-ph/0602244] [SPIRES].

    Article  ADS  Google Scholar 

  69. G.-J. Ding, Fermion Masses and Flavor Mixings in a Model with S 4 Flavor Symmetry, Nucl. Phys. B 827 (2010) 82 [arXiv:0909.2210] [SPIRES].

    Article  ADS  Google Scholar 

  70. D. Meloni, A See-Saw S 4 model for fermion masses and mixings, J. Phys. G 37 (2010) 055201 [arXiv:0911.3591] [SPIRES].

    ADS  Google Scholar 

  71. F. Bazzocchi, L. Merlo and S. Morisi, Fermion Masses and Mixings in a S 4 -based Model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [SPIRES].

    Article  ADS  Google Scholar 

  72. G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].

    Article  ADS  Google Scholar 

  73. P. Ciafaloni, M. Picariello, E. Torrente-Lujan and A. Urbano, Neutrino masses and tribimaximal mixing in Minimal renormalizable SUSY SU(5) Grand Unified Model with A 4 Flavor symmetry, Phys. Rev. D 79 (2009) 116010 [arXiv:0901.2236] [SPIRES].

    ADS  Google Scholar 

  74. T.J. Burrows and S.F. King, A 4 Family Symmetry from SU(5) SUSY GUTs in 6d, Nucl. Phys. B 835 (2010) 174 [arXiv:0909.1433] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  75. S. Morisi, M. Picariello and E. Torrente-Lujan, A model for fermion masses and lepton mixing in SO(10) × A 4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [SPIRES].

    ADS  Google Scholar 

  76. F. Bazzocchi, M. Frigerio and S. Morisi, Fermion masses and mixing in models with SO(10) × A 4 symmetry, Phys. Rev. D 78 (2008) 116018 [arXiv:0809.3573] [SPIRES].

    ADS  Google Scholar 

  77. H. Ishimori, Y. Shimizu and M. Tanimoto, S4 Flavor Symmetry of Quarks and Leptons in SU(5) GUT , Prog. Theor. Phys. 121 (2009) 769 [arXiv:0812.5031] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  78. H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  79. C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of Flavour with S 4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [SPIRES].

    Article  ADS  Google Scholar 

  80. D.-G. Lee and R.N. Mohapatra, An SO(10) × S 4 scenario for naturally degenerate neutrinos, Phys. Lett. B 329 (1994) 463 [hep-ph/9403201] [SPIRES].

    ADS  MATH  Google Scholar 

  81. R.N. Mohapatra, M.K. Parida and G. Rajasekaran, High scale mixing unification and large neutrino mixing angles, Phys. Rev. D 69 (2004) 053007 [hep-ph/0301234] [SPIRES].

    ADS  Google Scholar 

  82. Y. Cai and H.-B. Yu, An SO(10) GUT Model with S 4 Flavor Symmetry, Phys. Rev. D 74 (2006) 115005 [hep-ph/0608022] [SPIRES].

    ADS  Google Scholar 

  83. M.K. Parida, Intermediate left-right gauge symmetry, unification of couplings and fermion masses in SUSY SO(10) × S 4, Phys. Rev. D 78 (2008) 053004 [arXiv:0804.4571] [SPIRES].

    ADS  Google Scholar 

  84. B. Dutta, Y. Mimura and R.N. Mohapatra, An SO(10) Grand Unified Theory of Flavor, JHEP 05 (2010) 034 [arXiv:0911.2242] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  85. S.F. King and C. Luhn, A new family symmetry for SO(10) GUTs, Nucl. Phys. B 820 (2009) 269 [arXiv:0905.1686] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  86. S.F. King and C. Luhn, A Supersymmetric Grand Unified Theory of Flavour with PSL(2,7) x SO(10), Nucl. Phys. B 832 (2010) 414 [arXiv:0912.1344] [SPIRES].

    Article  ADS  Google Scholar 

  87. C. Luhn, S. Nasri and P. Ramond, Tri-Bimaximal Neutrino Mixing and the Family Symmetry Z 7Z 3, Phys. Lett. B 652 (2007) 27 [arXiv:0706.2341] [SPIRES].

    ADS  Google Scholar 

  88. C. Hagedorn, M.A. Schmidt and A.Y. Smirnov, Lepton Mixing and Cancellation of the Dirac Mass Hierarchy in SO(10) GUTs with Flavor Symmetries T7 and Sigma(81), Phys. Rev. D 79 (2009) 036002 [arXiv:0811.2955] [SPIRES].

    ADS  Google Scholar 

  89. I. de Medeiros Varzielas, S.F. King and G.G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [SPIRES].

    ADS  Google Scholar 

  90. I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [SPIRES].

    ADS  Google Scholar 

  91. F. Bazzocchi and I. de Medeiros Varzielas, Tri-bi-maximal mixing in viable family symmetry unified model with extended seesaw, Phys. Rev. D 79 (2009) 093001 [arXiv:0902.3250] [SPIRES].

    ADS  Google Scholar 

  92. S.F. King and M. Malinsky, Towards a complete theory of fermion masses and mixings with SO(3) family symmetry and 5d SO(10) unification, JHEP 11 (2006) 071 [hep-ph/0608021] [SPIRES].

    Article  ADS  Google Scholar 

  93. S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry, Phys. Lett. B 520 (2001) 243 [hep-ph/0108112] [SPIRES].

    ADS  Google Scholar 

  94. S.F. King and G.G. Ross, Fermion masses and mixing angles from SU(3) family symmetry and unification, Phys. Lett. B 574 (2003) 239 [hep-ph/0307190] [SPIRES].

    ADS  Google Scholar 

  95. I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [SPIRES].

    Article  ADS  Google Scholar 

  96. S.F. King, Neutrino mass models, Rept. Prog. Phys. 67 (2004) 107 [hep-ph/0310204] [SPIRES].

    Article  ADS  Google Scholar 

  97. R.N. Mohapatra et al., Theory of neutrinos: A white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [SPIRES].

    Article  ADS  Google Scholar 

  98. R.N. Mohapatra and A.Y. Smirnov, Neutrino Mass and New Physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [SPIRES]

    Article  ADS  Google Scholar 

  99. C.H. Albright, Overview of Neutrino Mixing Models and Ways to Differentiate among Them, arXiv:0905.0146 [SPIRES].

  100. G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, arXiv:1002.0211 [SPIRES].

  101. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, SNO, KamLAND and neutrino oscillations: theta(13), arXiv:0905.3549 [SPIRES].

  102. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, What we (would like to) know about the neutrino mass, arXiv:0809.2936 [SPIRES].

  103. S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [SPIRES].

    Article  ADS  Google Scholar 

  104. I. Masina, A maximal atmospheric mixing from a maximal CP-violating phase, Phys. Lett. B 633 (2006) 134 [hep-ph/0508031] [SPIRES].

    ADS  Google Scholar 

  105. S. Antusch and S.F. King, Charged lepton corrections to neutrino mixing angles and CP phases revisited, Phys. Lett. B 631 (2005) 42 [hep-ph/0508044] [SPIRES].

    ADS  Google Scholar 

  106. S. Antusch, P. Huber, S.F. King and T. Schwetz, Neutrino mixing sum rules and oscillation experiments, JHEP 04 (2007) 060 [hep-ph/0702286] [SPIRES].

    Article  ADS  Google Scholar 

  107. S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [SPIRES].

    Article  ADS  Google Scholar 

  108. A. Dighe, S. Goswami and W. Rodejohann, Corrections to Tri-bimaximal Neutrino Mixing: Renormalization and Planck Scale Effects, Phys. Rev. D 75 (2007) 073023 [hep-ph/0612328] [SPIRES].

    ADS  Google Scholar 

  109. S. Boudjemaa and S.F. King, Deviations from Tri-bimaximal Mixing: Charged Lepton Corrections and Renormalization Group Running, Phys. Rev. D 79 (2009) 033001 [arXiv:0808.2782] [SPIRES].

    ADS  Google Scholar 

  110. S. Antusch, S.F. King and M. Malinsky, Third Family Corrections to Tri-bimaximal Lepton Mixing and a New Sum Rule, Phys. Lett. B 671 (2009) 263 [arXiv:0711.4727] [SPIRES].

    ADS  Google Scholar 

  111. S. Antusch, S.F. King and M. Malinsky, Third Family Corrections to Quark and Lepton Mixing in SUSY Models with non-Abelian Family Symmetry, JHEP 05 (2008) 066 [arXiv:0712.3759] [SPIRES].

    Article  ADS  Google Scholar 

  112. S.F. King, Tri-bimaximal Neutrino Mixing and θ13, Phys. Lett. B 675 (2009) 347 [arXiv:0903.3199] [SPIRES].

    ADS  Google Scholar 

  113. S.F. King, Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal mixing, Phys. Lett. B 659 (2008) 244 [arXiv:0710.0530] [SPIRES].

    ADS  Google Scholar 

  114. S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  115. R. Howl and S.F. King, Solving the Flavour Problem in Supersymmetric Standard Models with Three Higgs Families, Phys. Lett. B 687 (2010) 355 [arXiv:0908.2067] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Antusch.

Additional information

ArXiv ePrint: 1003.5498

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antusch, S., Boudjemaa, S. & King, S.F. Neutrino mixing angles in sequential dominance to NLO and NNLO. J. High Energ. Phys. 2010, 96 (2010). https://doi.org/10.1007/JHEP09(2010)096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)096

Keywords

Navigation