Skip to main content
Log in

Phase structure and compactness

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In order to study the influence of compactness on low-energy properties, we compare the phase structures of the compact and non-compact two-dimensional multi-frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and non-compact models coincides, but their low-energy behaviors differ. The critical frequency β 2 = 8π at which the sine-Gordon model undergoes a topological phase transition is found to be unaffected by the compactness of the field since it is determined by high-energy scaling laws. However, the compact two-frequency sine-Gordon model has first and second order phase transitions determined by the low-energy scaling: we show that these are absent in the non-compact model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zinn-Justin, Quantum field theory and critical phenomena, Oxford University Press, Oxford U.K. (1996).

    MATH  Google Scholar 

  2. G. Mussardo, Statistical field theory. An introduction to exactly solved models of statistical physics, Oxford University Press, Oxford U.K. (2009).

    Google Scholar 

  3. G. Delfino and G. Mussardo, Non-integrable aspects of the multi-frequency sine-Gordon model, Nucl. Phys. B 516 (1998) 675 [hep-th/9709028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. M. Fabrizio, A.O. Gogolin and A.A. Nersesian, Critical properties of the double-frequency sine-Gordon model with applications, Nucl. Phys. B 580 (2000) 647 [cond-mat/0001227] [SPIRES].

    ADS  Google Scholar 

  5. Z. Bajnok, L. Palla, G. Tak’acs and F. Wagner, The k-folded sine-Gordon model in finite volume, Nucl. Phys. B 587 (2000) 585 [hep-th/0004181] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. Z. Bajnok, L. Palla, G. Tak’acs and F. Wagner, Nonperturbative study of the two frequency sine-Gordon model, Nucl. Phys. B 601 (2001) 503 [hep-th/0008066] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. G. Mussardo, V. Riva and G. Sotkov, Semiclassical particle spectrum of double sine-Gordon model, Nucl. Phys. B 687 (2004) 189 [hep-th/0402179] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. G. Zsolt Tóth, A nonperturbative study of phase transitions in the multi-frequency sine-Gordon model, J. Phys. A 37 (2004) 9631 [hep-th/0406139] [SPIRES].

    ADS  Google Scholar 

  9. G. Tak’acs and F. Wagner, Double sine-Gordon model revisited, Nucl. Phys. B 741 (2006) 353 [hep-th/0512265] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. J. Comellas, Polchinski equation, reparameterization invariance and the derivative expansion, Nucl. Phys. B 509 (1998) 662 [hep-th/9705129] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. M.E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70 (1998) 653 [SPIRES].

    ADS  MATH  Google Scholar 

  12. D.F. Litim and J. Pawlowski, On gauge invariant Wilsonian flows, in The exact renormalization group, A. Krasnitz et al., World Scientific, Singapore (1999), pag. 168, hep-th/9901063.

    Google Scholar 

  13. C. Bagnuls and C. Bervillier, Exact renormalization group equations: an introductory review, Phys. Rept. 348 (2001) 91 [hep-th/0002034] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  14. J. Berges, N. Tetradis and C. Wetterich, Non-perturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363 (2002) 223 [hep-ph/0005122] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  15. J. Polonyi, Lectures on the functional renormalization group, Central Eur. J. Phys. 1 (2004) 1 [hep-th/0110026].

    ADS  Google Scholar 

  16. J. Pawlowski, Aspects of the functional renormalisation group, Ann. Phys. 322 (2007) 2831 [hep-th/0512261] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  17. H. Gies, Introduction to the functional RG and applications to gauge theories, hep-ph/0611146 [SPIRES].

  18. B. Delamotte, An introduction to the nonperturbative renormalization group, cond-mat/0702365 [SPIRES].

  19. O.J. Rosten, Fundamentals of the exact renormalization group, arXiv:1003.1366 [SPIRES].

  20. A.O. Gogolin, A.A. Nersesyan and A.M. Tsvelik, Bosonization and strongly correlated systems, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  21. S.R. Coleman, Quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11 (1975) 2088 [SPIRES].

    ADS  Google Scholar 

  22. D. Amit, Y.Y. Goldschmidt and G. Grinstein, Renormalisation group analysis of the phase transition in the 2D Coulomb gas, sine-Gordon theory and XY-model, J. Phys. A 13 (1980) 585.

    MathSciNet  ADS  Google Scholar 

  23. K. Huang and J. Polonyi, Renormalization of the sine-Gordon model and nonconservation of the kink current, Int. J. Mod. Phys. A 6 (1991) 409.

    MathSciNet  ADS  Google Scholar 

  24. A.B. Zamolodchikov, Mass scale in the sine-Gordon model and its reductions, Int. J. Mod. Phys. A 10 (1995) 1125 [SPIRES].

    ADS  Google Scholar 

  25. J. Balogh and A. Hegedűs, Two-loop beta functions of the sine-Gordon model, J. Phys. A 33 (2000) 6543 [hep-th/0003258] [SPIRES].

    ADS  Google Scholar 

  26. G. Von Gersdorff and C. Wetterich, Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition, Phys. Rev. B 64 (2001) 054513 [hep-th/0008114] [SPIRES].

    ADS  Google Scholar 

  27. H. Bozkaya, M. Faber, A. N. Ivanov and M. Pitschmann, On the renormalization of the two-point Green function in the sine-Gordon model, J. Phys. A 39 (2006) 2177.

    MathSciNet  ADS  Google Scholar 

  28. M. Faber and A.N. Ivanov, Is the energy density of the ground state of the sine-Gordon model unbounded from below for β 2 > 8π?, J. Phys. A 36 (2003) 7839 [hep-th/0205249] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. D. Bazeia, L. Losano, J.M.C. Malbouisson and R. Menezes, Classical behavior of deformed sine-Gordon models, Physica D 237 (2008) 937 [arXiv:0708.1740] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. D. Bazeia, L. Losano, R. Menezes and M.A.M. Souza, New family of sine-Gordon models, Europhys. Lett. 87 (2009) 21001 [arXiv:0906.2849] [SPIRES].

    ADS  Google Scholar 

  31. S.R. Coleman, More about the massive Schwinger model, Ann. Phys. 101 (1976) 239 [SPIRES].

    ADS  Google Scholar 

  32. W. Fischler, J.B. Kogut and L. Susskind, Quark confinement in unusual environments, Phys. Rev. D 19 (1979) 1188 [SPIRES].

    ADS  Google Scholar 

  33. D. Gepner, Nonabelian bosonization and multiflavor QED and QCD in two-dimensions, Nucl. Phys. B 252 (1985) 481 [SPIRES].

    ADS  Google Scholar 

  34. J.E. Hetrick, Y. Hosotani and S. Iso, The interplay between mass, volume, θ and \( < \psi \bar{\psi } > \) in N-flavor QED 2, Phys. Rev. D 53 (1996) 7255 [hep-th/9510090] [SPIRES].

    ADS  Google Scholar 

  35. R. Rodriguez and Y. Hosotani, Confinement and chiral condensates in 2D QED with massive N-flavor fermions, Phys. Lett. B 375 (1996) 273 [hep-th/9602029] [SPIRES].

    ADS  Google Scholar 

  36. A.V. Smilga, Critical coefficients, Phys. Rev. D 55 (1997) 443 [hep-th/9607154] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. C. Gattringer, I. Hip and C.B. Lang, The chiral limit of the two-flavor lattice Schwinger model with Wilson fermions, Phys. Lett. B 466 (1999) 287 [hep-lat/9909025] [SPIRES].

    ADS  Google Scholar 

  38. F. Berruto, G. Grignani, G.W. Semenoff and P. Sodano, On the correspondence between the strongly coupled 2-flavor lattice Schwinger model and the Heisenberg antiferromagnetic chain, Ann. Phys. 275 (1999) 254 [hep-th/9901142] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  39. F. Cooper, P. Sodano, A. Trombettoni and A. Chodos, An O(N) symmetric extension of the sine-Gordon equation, Phys. Rev. D 68 (2003) 045011 [hep-th/0304112] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. I. Nandori, S. Nagy, K. Sailer and U.D. Jentschura, Renormalization-group analysis of layered sine-Gordon type models, Nucl. Phys. B 725 (2005) 467 [hep-th/0509100] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. I. Nandori, U.D. Jentschura and J. Zinn-Justin, Effective action and phase structure of multi-layer sine-Gordon type models, Ann. Phys. 321 (2006) 2647 [hep-th/0509186] [SPIRES].

    ADS  MATH  Google Scholar 

  42. I. Nándori, Symmetries and phase structure of the layered sine-Gordon model, J. Phys. A 39 (2006) 8119 [hep-th/0602202].

    ADS  Google Scholar 

  43. I. Nandori, On the renormalization of the bosonized multi-flavor Schwinger model, Phys. Lett. B 662 (2008) 302 [arXiv:0707.2745] [SPIRES].

    ADS  Google Scholar 

  44. S. Nagy, J. Polonyi and K. Sailer, Periodic ground state for the charged massive Schwinger model, Phys. Rev. D 70 (2004) 105023 [hep-th/0405156] [SPIRES].

    ADS  Google Scholar 

  45. S. Nagy, I. Nandori, J. Polonyi and K. Sailer, Generalized universality in the massive sine-Gordon model, Phys. Rev. D 77 (2008) 025026 [hep-th/0611216] [SPIRES].

    ADS  Google Scholar 

  46. S. Nagy, Massless fermions in multi-flavor QED 2, Phys. Rev. D 79 (2009) 045004 [arXiv:0805.2009] [SPIRES].

    ADS  Google Scholar 

  47. V. Baluni, The Bose form of two-dimensional quantum chromodynamics, Phys. Lett. B 90 (1980) 407 [SPIRES].

    ADS  Google Scholar 

  48. J. Kovacs, S. Nagy, I. Nandori and K. Sailer, Renormalization of QCD 2, arXiv:1001.3958 [SPIRES].

  49. J.R. Ellis and Y. Frishman, Exotic baryons in two-dimensional QCD, JHEP 08 (2005) 081 [hep-ph/0502193] [SPIRES].

    ADS  Google Scholar 

  50. H. Blas, Exotic baryons in two-dimensional QCD and the generalized sine-Gordon solitons, JHEP 03 (2007) 055 [hep-th/0702197] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. H. Blas and H.L. Carrion, Solitons, kinks and extended hadron model based on the generalized sine-Gordon theory, JHEP 01 (2007) 027 [hep-th/0610107] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. H. Blas and H.L. Carrion, Solitons, kinks and extended hadron model based on the generalized sine-Gordon theory, JHEP 01 (2007) 027 [hep-th/0610107] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. K. Pohlmeyer, Integrable hamiltonian systems and interactions through quadratic constraints, Commun. Math. Phys. 46 (1976) 207 [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  54. A. Mikhailov, An action variable of the sine-Gordon model, J. Geom. Phys. 56 (2006) 2429 [hep-th/0504035] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  55. D. Bazeia, F.A. Brito and L. Losano, Scalar fields, bent branes, and RG flow, JHEP 11 (2006) 064 [hep-th/0610233] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  56. V. Afonso, D. Bazeia and F.A. Brito, Deforming tachyon kinks and tachyon potentials, JHEP 08 (2006) 073 [hep-th/0603230] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  58. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    ADS  Google Scholar 

  59. J. Alexandre and D. Tanner, Flattening of the axion potential and vacuum energy, arXiv:1003.6049 [SPIRES].

  60. I. Nándori and K. Sailer, Differential renormalization-group approach to the layered sine-Gordon model, Phil. Mag. 86 (2006) 2033 [hep-th/0508033] [SPIRES].

    ADS  Google Scholar 

  61. I. Nándori et al., Applicability of layered sine-Gordon models to layered superconductors: II. The case of magnetic coupling, J. Phys.: Condens. Matter 19 (2007) 496211 [arXiv:0705.0578].

    Google Scholar 

  62. I. Nándori et al., On the applicability of the layered sine-Gordon model for Josephson-coupled high-T c layered superconductors, J. Phys.: Condens. Matter 19 (2007) 236226 [cond-mat/0703750].

    ADS  Google Scholar 

  63. E. Abdalla, M.C.B. Abdalla and K.D. Rothe, Non-perturbative methods in two-dimensional quantum field theory, World Scientific, Singapore (1991).

    Google Scholar 

  64. V.P. Yurov and A.B. Zamolodchikov, Truncated conformal space approach to scaling Lee-Yang model, Int. J. Mod. Phys. A 5 (1990) 3221 [SPIRES].

    ADS  Google Scholar 

  65. I. Nandori, J. Polonyi and K. Sailer, On the renormalization of periodic potentials, Phys. Rev. D 63 (2001) 045022 [hep-th/9910167] [SPIRES].

    ADS  Google Scholar 

  66. I. Nandori, J. Polonyi and K. Sailer, Wave-function renormalization for the Coulomb-gas in Wegner-Houghton’s RG method, Phil. Mag. B 81 (2001) 1615 [hep-th/0012208] [SPIRES].

    ADS  Google Scholar 

  67. I. Nandori, U.D. Jentschura, K. Sailer and G. Soff, Renormalization-group analysis of the generalized sine-Gordon model and of the Coulomb gas for d ≥ 3 dimensions, Phys. Rev. D 69 (2004) 025004 [hep-th/0310114] [SPIRES].

    ADS  Google Scholar 

  68. I. Nandori, K. Sailer, U.D. Jentschura and G. Soff, Renormalization of the periodic scalar field theory by Polchinski’s renormalization group method, J. Phys. G 28 (2002) 607 [hep-th/0202113] [SPIRES].

    ADS  Google Scholar 

  69. S. Nagy, K. Sailer, J. Polonyi, Effective potential for the massive sine-Gordon model, J. Phys. A 39 (2006) 8105.

    MathSciNet  ADS  Google Scholar 

  70. S. Nagy, I. Nandori, J. Polonyi and K. Sailer, Renormalizable parameters of the sine-Gordon model, Phys. Lett. B 647 (2007) 152 [hep-th/0611061] [SPIRES].

    ADS  Google Scholar 

  71. S. Nagy, I. Nandori, J. Polonyi and K. Sailer, Functional renormalization group approach to the sine-Gordon model, Phys. Rev. Lett. 102 (2009) 241603 [arXiv:0904.3689] [SPIRES].

    ADS  Google Scholar 

  72. F. Ye, G.-H. Ding and B.-W. Xu, The Ising transition in the double-frequency sine-Gordon model, cond-mat/0104321 [SPIRES].

  73. V.L. Berezinskii, Destruction of long-range order in one-dimensional and 2-dimensional systems possessing a continuous symmetry group. 2. Quantum systems, Zh. Eksp. Teor. Fiz. 61 (1971) 1144 [Sov. Phys.-JETP 34 (1972) 610].

    Google Scholar 

  74. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181.

    ADS  Google Scholar 

  75. K.G. Wilson, The renormalization group and strong interactions, Phys. Rev. D 3 (1971) 1818 [SPIRES].

    ADS  Google Scholar 

  76. K.G. Wilson and J. Kogut, Renormalization group and e-expansion, Phys. Rep. C 12 (1974) 77.

    ADS  Google Scholar 

  77. K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys. 47 (1975) 773 [SPIRES].

    ADS  Google Scholar 

  78. K.G. Wilson, The renormalization group and critical phenomena, Rev. Mod. Phys. 55 (1983) 583 [SPIRES].

    ADS  Google Scholar 

  79. A. Ringwald and C. Wetterich, Average action for the N component φ 4 theory, Nucl. Phys. B 334 (1990) 506 [SPIRES].

    ADS  Google Scholar 

  80. U. Ellwanger, Flow equations for N point functions and bound states, Z. Phys. C 62 (1994) 503 [hep-ph/9308260] [SPIRES].

    ADS  Google Scholar 

  81. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [SPIRES].

    ADS  Google Scholar 

  82. C. Wetterich, Average action and the renormalization group equations, Nucl. Phys. B 352 (1991) 529 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  83. T.R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265] [SPIRES].

    ADS  Google Scholar 

  84. T.R. Morris, Derivative expansion of the exact renormalization group, Phys. Lett. B 329 (1994) 241 [hep-ph/9403340] [SPIRES].

    ADS  Google Scholar 

  85. I. Nandori, S. Nagy, K. Sailer and A. Trombettoni, Comparison of renormalization group schemes for sine-Gordon type models, Phys. Rev. D 80 (2009) 025008 [arXiv:0903.5524] [SPIRES].

    ADS  Google Scholar 

  86. D.F. Litim, Optimisation of the exact renormalisation group, Phys. Lett. B 486 (2000) 92 [hep-th/0005245] [SPIRES].

    ADS  Google Scholar 

  87. D.F. Litim, Derivative expansion and renormalisation group flows, JHEP 11 (2001) 059 [hep-th/0111159] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  88. D.F. Litim, Universality and the renormalisation group, JHEP 07 (2005) 005 [hep-th/0503096] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  89. R.D. Ball, P.E. Haagensen, J. Latorre, I. and E. Moreno, Scheme independence and the exact renormalization group, Phys. Lett. B 347 (1995) 80 [hep-th/9411122] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  90. D.F. Litim, Scheme independence at first order phase transitions and the renormalisation group, Phys. Lett. B 393 (1997) 103 [hep-th/9609040] [SPIRES].

    ADS  Google Scholar 

  91. K.-I. Aoki, K. Morikawa, W. Souma, J.-I. Sumi and H. Terao, Rapidly converging truncation scheme of the exact renormalization group, Prog. Theor. Phys. 99 (1998) 451 [hep-th/9803056] [SPIRES].

    ADS  Google Scholar 

  92. J.I. Latorre and T.R. Morris, Exact scheme independence, JHEP 11 (2000) 004 [hep-th/0008123] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  93. S.-B. Liao, J. Polonyi and M. Strickland, Optimization of renormalization group flow, Nucl. Phys. B 567 (2000) 493 [hep-th/9905206] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  94. F. Freire and D.F. Litim, Charge cross-over at the U(1)-Higgs phase transition, Phys. Rev. D 64 (2001) 045014 [hep-ph/0002153] [SPIRES].

    ADS  Google Scholar 

  95. L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Optimization of the derivative expansion in the nonperturbative renormalization group, Phys. Rev. D 67 (2003) 065004 [hep-th/0211055] [SPIRES].

    ADS  Google Scholar 

  96. L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Nonperturbative renormalization group approach to the Ising model: a derivative expansion at order4, Phys. Rev. B 68 (2003) 064421 [hep-th/0302227] [SPIRES].

    ADS  Google Scholar 

  97. B. Delamotte, D. Mouhanna and M. Tissier, Nonperturbative renormalization group approach to frustrated magnets, Phys. Rev. B 69 (2004) 134413.

    ADS  Google Scholar 

  98. F.J. Wegner and A. Houghton, Renormalization group equation for critical phenomena, Phys. Rev. A 8 (1973) 401 [SPIRES].

    ADS  Google Scholar 

  99. J. Polchinski, Renormalization and effective lagrangians, Nucl. Phys. B 231 (1984) 269 [SPIRES].

    ADS  Google Scholar 

  100. J. Alexandre and J. Polonyi, Functional Callan-Symanzik equation, Ann. Phys. 288 (2001) 37 [hep-th/0010128] [SPIRES].

    ADS  MATH  Google Scholar 

  101. J. Alexandre, J. Polonyi and K. Sailer, Functional Callan-Symanzik equation for QED, Phys. Lett. B 531 (2002) 316 [hep-th/0111152] [SPIRES].

    ADS  Google Scholar 

  102. J. Alexandre, V. Branchina and J. Polonyi, Instability induced renormalization, Phys. Lett. B 445 (1999) 351.

    ADS  Google Scholar 

  103. J. Adams et al., Solving non-perturbative flow equations, Mod. Phys. Lett. A 10 (1995) 2367 [hep-th/9507093] [SPIRES].

    ADS  Google Scholar 

  104. V. Pangon, S. Nagy, J. Polonyi and K. Sailer, Quantum censorship in two dimensions, arXiv:0907.0496 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Nándori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nándori, I., Nagy, S., Sailer, K. et al. Phase structure and compactness. J. High Energ. Phys. 2010, 69 (2010). https://doi.org/10.1007/JHEP09(2010)069

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)069

Keywords

Navigation