Journal of High Energy Physics

, 2010:45 | Cite as

Uniformly accelerated observer in Moyal spacetime



In Minkowski space, an accelerated reference frame may be defined as one that is related to an inertial frame by a sequence of instantaneous Lorentz transformations. Such an accelerated observer sees a causal horizon, and the quantum vacuum of the inertial observer appears thermal to the accelerated observer, also known as the Unruh effect. We argue that an accelerating frame may be similarly defined (i.e. as a sequence of instantaneous Lorentz transformations) in noncommutative Moyal spacetime, and discuss the twisted quantum field theory appropriate for such an accelerated observer. Our analysis shows that there are several new features in the case of noncommutative space-time: chiral massless fields in (1 + 1) dimensions have a qualitatively different behavior compared to massive fields. In addition, the vacuum of the inertial observer is no longer an equilibrium thermal state of the accelerating observer, and the Bose-Einstein distribution acquires θ-dependent corrections.


Non-Commutative Geometry Thermal Field Theory Space-Time Symmetries 


  1. [1]
    S. Doplicher, K. Fredenhagen and J.E. Roberts, The Quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 [hep-th/0303037] [SPIRES]. MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    D. Bahns, S. Doplicher, K. Fredenhagen and G. Piacitelli, Quantum Geometry on Quantum Spacetime: Distance, Area and Volume Operators, arXiv:1005.2130 [SPIRES].
  3. [3]
    R.J. Hughes, Uniform acceleration and the quantum field theory vacuum, I, Annals Phys. 162 (1985) 1 [SPIRES]. ADSCrossRefGoogle Scholar
  4. [4]
    L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787 [arXiv:0710.5373] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    P. Aschieri et al., A gravity theory on noncommutative spaces, Class. Quant. Grav. 22 (2005) 3511 [hep-th/0504183] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B 604 (2004) 98 [hep-th/0408069] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    J. Wess, Deformed coordinate spaces: Derivatives, lectures given at BW 2003 Workshop on Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Perspectives of Balkans Collaboration, Vrnjacka Banja, Serbia, August 29–September 2 2003 hep-th/0408080 [SPIRES].
  8. [8]
    A.P. Balachandran, G. Mangano, A. Pinzul and S. Vaidya, Spin and statistics on the Groenwald-Moyal plane: Pauli-forbidden levels and transitions, Int. J. Mod. Phys. A 21 (2006) 3111 [hep-th/0508002] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    A.P. Balachandran, T.R. Govindarajan, G. Mangano, A. Pinzul, B.A. Qureshi and S. Vaidya, Statistics and UV-IR mixing with twisted Poincar´e invariance, Phys. Rev. D 75 (2007) 045009 [hep-th/0608179] [SPIRES].ADSGoogle Scholar
  10. [10]
    A.P. Balachandran, A. Pinzul and B.A. Qureshi, UV-IR Mixing in Non-Commutative Plane, Phys. Lett. B 634 (2006) 434 [hep-th/0508151] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, Cambridge U.K. (1995).MATHCrossRefGoogle Scholar
  12. [12]
    H. Grosse, On the construction of Möller operators for the nonlinear schrodinger equation, Phys. Lett. B 86 (1979) 267. MathSciNetADSGoogle Scholar
  13. [13]
    A.B. Zamolodchikov and Al.B. Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Annals Phys. 120 (1979) 253.MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    L.D. Faddeev, Quantum completely integral models of field theory, Sov. Sci. Rev. C 1 (1980) 107 [SPIRES].Google Scholar
  15. [15]
    S. Takagi, Vacuum Noise And Stress Induced By Uniform Accelerator: Hawking-Unruh Effect In Rindler Manifold Of Arbitrary Dimensions, Prog. Theor. Phys. Suppl. 88 (1986) 1 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    H. Grosse and G. Lechner, Wedge-Local Quantum Fields and Noncommutative Minkowski Space, JHEP 11 (2007) 012 [arXiv:0706.3992] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    S. Wienberg, The Quantum Theory of Fields, Volume I, Cambridge University Press, Cambridge U.K. (1995).Google Scholar
  18. [18]
    J.J. Bisognano and E.H. Wichmann, On The Duality Condition For Quantum Fields, J. Math. Phys. 17 (1976) 303 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J.J. Bisognano and E.H. Wichmann, On The Duality Condition For A Hermitian Scalar Field, J. Math. Phys. 16 (1975) 985 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    G.L. Sewell, Quantum fields on manifolds: PCT and gravitationally induced thermal states, Annals Phys. 141 (1982) 201 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S.A. Fulling and S.N.M. Ruijsenaars, Temperature, periodicity, and horizons, Phys. Rept. 152 (1987) 135.MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    U.H. Gerlach, Minkowski Bessel modes, Phys. Rev. D 38 (1988) 514 [gr-qc/9910097] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations