Journal of High Energy Physics

, 2019:115 | Cite as

Luminous signals of inelastic dark matter in large detectors

  • Joshua EbyEmail author
  • Patrick J. Fox
  • Roni Harnik
  • Graham D. Kribs
Open Access
Regular Article - Theoretical Physics


We study luminous dark matter signals in models with inelastic scattering. Dark matter χ1 that scatters inelastically off elements in the Earth is kicked into an excited state χ2 that can subsequently decay into a monoenergetic photon inside a detector. The photon signal exhibits large sidereal-daily modulation due to the daily rotation of the Earth and anisotropies in the problem: the dark matter wind comes from the direction of Cygnus due to the Sun's motion relative to the galaxy, and the rock overburden is anisotropic, as is the dark matter scattering angle. This allows outstanding separation of signal from backgrounds. We investigate the sensitivity of two classes of large underground detectors to this modulating photon line signal: large liquid scintillator neutrino experiments, including Borexino and JUNO, and the proposed large gaseous scintillator directional detection experiment CYGNUS. Borexino's (JUNO's) sensitivity exceeds the bounds from xenon experiments on inelastic nuclear recoil for mass splittings \( \delta \underset{\sim }{>} \) 240 (180) keV, and is the only probe of inelastic dark matter for 350 keV \( \underset{\sim }{<}\delta \underset{\sim }{<} \) 600 keV. CYGNUS's sensitivity is at least comparable to xenon experiments with ~ 10m3 volume detector for \( \delta \underset{\sim }{<} \) 150 keV, and could be substantially better with larger volumes and improved background rejection. Such improvements lead to the unusual situation that the inelastic signal becomes the superior way to search for dark matter even if the elastic and inelastic scattering cross sections are comparable.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    L.J. Hall, T. Moroi and H. Murayama, Sneutrino cold dark matter with lepton number violation, Phys. Lett. B 424 (1998) 305 [hep-ph/9712515] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].
  3. [3]
    D. Tucker-Smith and N. Weiner, The Status of inelastic dark matter, Phys. Rev. D 72 (2005) 063509 [hep-ph/0402065] [INSPIRE].
  4. [4]
    D.P. Finkbeiner and N. Weiner, Exciting Dark Matter and the INTEGRAL/SPI 511 keV signal, Phys. Rev. D 76 (2007) 083519 [astro-ph/0702587] [INSPIRE].
  5. [5]
    C. Arina and N. Fornengo, Sneutrino cold dark matter, a new analysis: Relic abundance and detection rates, JHEP 11 (2007) 029 [arXiv:0709.4477] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Chang, G.D. Kribs, D. Tucker-Smith and N. Weiner, Inelastic Dark Matter in Light of DAMA/LIBRA, Phys. Rev. D 79 (2009) 043513 [arXiv:0807.2250] [INSPIRE].ADSGoogle Scholar
  7. [7]
    Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for Inelastic Dark Matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P.J. Fox, G.D. Kribs and T.M.P. Tait, Interpreting Dark Matter Direct Detection Independently of the Local Velocity and Density Distribution, Phys. Rev. D 83 (2011) 034007 [arXiv:1011.1910] [INSPIRE].ADSGoogle Scholar
  9. [9]
    T. Lin and D.P. Finkbeiner, Magnetic Inelastic Dark Matter: Directional Signals Without a Directional Detector, Phys. Rev. D 83 (2011) 083510 [arXiv:1011.3052] [INSPIRE].ADSGoogle Scholar
  10. [10]
    H. An, P.S.B. Dev, Y. Cai and R.N. Mohapatra, Sneutrino Dark Matter in Gauged Inverse Seesaw Models for Neutrinos, Phys. Rev. Lett. 108 (2012) 081806 [arXiv:1110.1366] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Pospelov, N. Weiner and I. Yavin, Dark matter detection in two easy steps, Phys. Rev. D 89 (2014) 055008 [arXiv:1312.1363] [INSPIRE].ADSGoogle Scholar
  12. [12]
    K.R. Dienes, J. Kumar, B. Thomas and D. Yaylali, Dark-Matter Decay as a Complementary Probe of Multicomponent Dark Sectors, Phys. Rev. Lett. 114 (2015) 051301 [arXiv:1406.4868] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Barello, S. Chang and C.A. Newby, A Model Independent Approach to Inelastic Dark Matter Scattering, Phys. Rev. D 90 (2014) 094027 [arXiv:1409.0536] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Bramante, P.J. Fox, G.D. Kribs and A. Martin, Inelastic frontier: Discovering dark matter at high recoil energy, Phys. Rev. D 94 (2016) 115026 [arXiv:1608.02662] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic Mixing as the Origin of Light Dark Scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P.W. Graham, R. Harnik, S. Rajendran and P. Saraswat, Exothermic Dark Matter, Phys. Rev. D 82 (2010) 063512 [arXiv:1004.0937] [INSPIRE].ADSGoogle Scholar
  17. [17]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite Inelastic Dark Matter, Phys. Lett. B 692 (2010) 323 [arXiv:0903.3945] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Lisanti and J.G. Wacker, Parity Violation in Composite Inelastic Dark Matter Models, Phys. Rev. D 82 (2010) 055023 [arXiv:0911.4483] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Chang, N. Weiner and I. Yavin, Magnetic Inelastic Dark Matter, Phys. Rev. D 82 (2010) 125011 [arXiv:1007.4200] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Schwetz and J. Zupan, Dark Matter attempts for CoGeNT and DAMA, JCAP 08 (2011) 008 [arXiv:1106.6241] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Weiner and I. Yavin, UV completions of magnetic inelastic and Rayleigh dark matter for the Fermi Line(s), Phys. Rev. D 87 (2013) 023523 [arXiv:1209.1093] [INSPIRE].ADSGoogle Scholar
  23. [23]
    XENON collaboration, Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector, Phys. Rev. D 96 (2017) 042004 [arXiv:1705.02614] [INSPIRE].
  24. [24]
    PandaX-II collaboration, Exploring the dark matter inelastic frontier with 79.6 days of PandaX-II data, Phys. Rev. D 96 (2017) 102007 [arXiv:1708.05825] [INSPIRE].
  25. [25]
    H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Baryon Destruction by Asymmetric Dark Matter, Phys. Rev. D 84 (2011) 096008 [arXiv:1106.4320] [INSPIRE].ADSGoogle Scholar
  27. [27]
    H. An, M. Pospelov and J. Pradler, Direct constraints on charged excitations of dark matter, Phys. Rev. Lett. 109 (2012) 251302 [arXiv:1209.6358] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Huang and Y. Zhao, Dark Matter Induced Nucleon Decay: Model and Signatures, JHEP 02 (2014) 077 [arXiv:1312.0011] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H. Yuksel, S. Horiuchi, J.F. Beacom and S. Ando, Neutrino Constraints on the Dark Matter Total Annihilation Cross Section, Phys. Rev. D 76 (2007) 123506 [arXiv:0707.0196] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K. Agashe, Y. Cui, L. Necib and J. Thaler, (In) direct Detection of Boosted Dark Matter, JCAP 10 (2014) 062 [arXiv:1405.7370] [INSPIRE].
  31. [31]
    J. Berger, Y. Cui and Y. Zhao, Detecting Boosted Dark Matter from the Sun with Large Volume Neutrino Detectors, JCAP 02 (2015) 005 [arXiv:1410.2246] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Kong, G. Mohlabeng and J.-C. Park, Boosted dark matter signals uplifted with self-interaction, Phys. Lett. B 743 (2015) 256 [arXiv:1411.6632] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Alhazmi, K. Kong, G. Mohlabeng and J.-C. Park, Boosted Dark Matter at the Deep Underground Neutrino Experiment, JHEP 04 (2017) 158 [arXiv:1611.09866] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Cui, M. Pospelov and J. Pradler, Signatures of Dark Radiation in Neutrino and Dark Matter Detectors, Phys. Rev. D 97 (2018) 103004 [arXiv:1711.04531] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Super-Kamiokande collaboration, Search for Boosted Dark Matter Interacting With Electrons in Super-Kamiokande, Phys. Rev. Lett. 120 (2018) 221301 [arXiv:1711.05278] [INSPIRE].
  36. [36]
    A. Olivares-Del Campo, C. Bœhm, S. Palomares-Ruiz and S. Pascoli, Dark matter-neutrino interactions through the lens of their cosmological implications, Phys. Rev. D 97 (2018) 075039 [arXiv:1711.05283] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Kim, K. Kong, J.-C. Park and S. Shin, Boosted Dark Matter Quarrying at Surface Neutrino Detectors, JHEP 08 (2018) 155 [arXiv:1804.07302] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. McKeen and N. Raj, Monochromatic dark neutrinos and boosted dark matter in noble liquid direct detection, Phys. Rev. D 99 (2019) 103003 [arXiv:1812.05102] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J. Bramante, B. Broerman, J. Kumar, R.F. Lang, M. Pospelov and N. Raj, Foraging for dark matter in large volume liquid scintillator neutrino detectors with multiscatter events, Phys. Rev. D 99 (2019) 083010 [arXiv:1812.09325] [INSPIRE].ADSGoogle Scholar
  40. [40]
    Y. Grossman, R. Harnik, O. Telem and Y. Zhang, Self-Destructing Dark Matter, JHEP 07 (2019) 017 [arXiv:1712.00455] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Bringmann and M. Pospelov, Novel direct detection constraints on light dark matter, Phys. Rev. Lett. 122 (2019) 171801 [arXiv:1810.10543] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    Y. Ema, F. Sala and R. Sato, Light Dark Matter at Neutrino Experiments, Phys. Rev. Lett. 122 (2019) 181802 [arXiv:1811.00520] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B. Feldstein, P.W. Graham and S. Rajendran, Luminous Dark Matter, Phys. Rev. D 82 (2010) 075019 [arXiv:1008.1988] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct Detection of Electroweak-Interacting Dark Matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection I: weak-scale matching, Phys. Rev. D 91 (2015) 043504 [arXiv:1401.3339] [INSPIRE].ADSGoogle Scholar
  48. [48]
    G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    P.J. Fox, G.D. Kribs and A. Martin, Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter, Phys. Rev. D 90 (2014) 075006 [arXiv:1405.3692] [INSPIRE].ADSGoogle Scholar
  50. [50]
    H.E. Haber and D. Wyler, Radiative Neutralino Decay, Nucl. Phys. B 323 (1989) 267 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    XENON100 collaboration, Study of the electromagnetic background in the XENON100 experiment, Phys. Rev. D 83 (2011) 082001 [Erratum ibid. D 85 (2012) 029904] [arXiv:1101.3866] [INSPIRE].
  52. [52]
    D.S. Akerib et al., Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector, Astropart. Phys. 62 (2015) 33 [arXiv:1403.1299] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    XENON collaboration, Intrinsic backgrounds from Rn and Kr in the XENON100 experiment, Eur. Phys. J. C 78 (2018) 132 [arXiv:1708.03617] [INSPIRE].
  54. [54]
    Borexino collaboration, Final results of Borexino Phase-I on low energy solar neutrino spectroscopy, Phys. Rev. D 89 (2014) 112007 [arXiv:1308.0443] [INSPIRE].
  55. [55]
    Lattice Strong Dynamics (LSD) collaboration, Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability, Phys. Rev. Lett. 115 (2015) 171803 [arXiv:1503.04205] [INSPIRE].
  56. [56]
    S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].
  57. [57]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  58. [58]
    C. McCabe, The Earth's velocity for direct detection experiments, JCAP 02 (2014) 027 [arXiv:1312.1355] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    F. Mayet et al., A review of the discovery reach of directional Dark Matter detection, Phys. Rept. 627 (2016) 1 [arXiv:1602.03781] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    T. Emken and C. Kouvaris, DaMaSCUS: The Impact of Underground Scatterings on Direct Detection of Light Dark Matter, JCAP 10 (2017) 031 [arXiv:1706.02249] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R. Rudnick and S. Gao, Composition of the Continental Crust, in Treatise on Geochemistry. Volume 4, second edition, H.D. Holland and K.K. Turekian eds., Elsevier (2014), chapter 4.1, pp. 1–51.
  62. [62]
    H. Palme and H. O'Neill, Cosmochemical Estimates of Mantle Composition, in Treatise on Geochemistry. Volume 3, second edition, H.D. Holland and K.K. Turekian eds., Elsevier (2014), chapter 3.1, pp. 1–39.
  63. [63]
    W. McDonough, Compositional Model for the Earth's Core, in Treatise on Geochemistry. Volume 3, second edition, H.D. Holland and K.K. Turekian eds., Elsevier (2014), chapter 3.16, pp. 559–597.
  64. [64]
    WebElements, The periodic table of the elements, (2019)
  65. [65]
    T. Piffl et al., The RAVE survey: the Galactic escape speed and the mass of the Milky Way, Astron. Astrophys. 562 (2014) A91 [arXiv:1309.4293] [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    N. Spooner, CYGNUS — A multi-latitude directional WIMP experiment, in proceedings of the 12th Identification of Dark Matter conference (IDM2018), Providence, RI, U.S.A., 23–27 July 2018.Google Scholar
  68. [68]
    CYGNUS collaboration, CYGNO: a CYGNUs collaboration 1m 3 Module with Optical Readout for Directional Dark Matter Search, arXiv:1901.04190 [INSPIRE].
  69. [69]
    JUNO collaboration, JUNO Conceptual Design Report, arXiv:1508.07166 [INSPIRE].
  70. [70]
    Borexino collaboration, A test of electric charge conservation with Borexino, Phys. Rev. Lett. 115 (2015) 231802 [arXiv:1509.01223] [INSPIRE].
  71. [71]
    CRESST collaboration, Results on light dark matter particles with a low-threshold CRESST-II detector, Eur. Phys. J. C 76 (2016) 25 [arXiv:1509.01515] [INSPIRE].
  72. [72]
    PICO collaboration, Dark matter search results from the PICO-60 CF 3 I bubble chamber, Phys. Rev. D 93 (2016) 052014 [arXiv:1510.07754] [INSPIRE].
  73. [73]
    XENON100 collaboration, XENON100 Dark Matter Results from a Combination of 477 Live Days, Phys. Rev. D 94 (2016) 122001 [arXiv:1609.06154] [INSPIRE].
  74. [74]
    C. Deaconu et al., Measurement of the directional sensitivity of Dark Matter Time Projection Chamber detectors, Phys. Rev. D 95 (2017) 122002 [arXiv:1705.05965] [INSPIRE].ADSGoogle Scholar
  75. [75]
    DRIFT collaboration, Low Threshold Results and Limits from the DRIFT Directional Dark Matter Detector, Astropart. Phys. 91 (2017) 65 [arXiv:1701.00171] [INSPIRE].
  76. [76]
    J. Eby, P.J. Fox, R. Harnik and G.D. Kribs, New Constraints on Magnetic Inelastic Dark Matter, to appear.Google Scholar
  77. [77]
    SNO+ collaboration, Current Status and Future Prospects of the SNO+ Experiment, Adv. High Energy Phys. 2016 (2016) 6194250 [arXiv:1508.05759] [INSPIRE].
  78. [78]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.02984 [INSPIRE].
  79. [79]
    R. Krall and M. Reece, Last Electroweak WIMP Standing: Pseudo-Dirac Higgsino Status and Compact Stars as Future Probes, Chin. Phys. C 42 (2018) 043105 [arXiv:1705.04843] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Joshua Eby
    • 1
    Email author
  • Patrick J. Fox
    • 2
  • Roni Harnik
    • 2
  • Graham D. Kribs
    • 3
  1. 1.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Theoretical Physics Department, FermilabBataviaU.S.A.
  3. 3.Department of PhysicsUniversity of OregonEugeneU.S.A.

Personalised recommendations