Journal of High Energy Physics

, 2019:111 | Cite as

Phases of U (Nc) QCD3 from type 0 strings and Seiberg duality

  • Mohammad Akhond
  • Adi ArmoniEmail author
  • Stefano Speziali
Open Access
Regular Article - Theoretical Physics


We propose an embedding of U(Nc) QCD3 with a Chern-Simons term in string theory. The UV gauge theory lives on the worldvolume of a Hanany-Witten brane configuration in type 0B string theory in the presence of Sagnotti’s O′3 orientifold. We use the brane configuration to propose a magnetic Seiberg dual. We identify various phases of the magnetic theory with conjectured phases of QCD3. In particular the symmetry breaking and bosonization phases are both associated with condensation of the dual squark field. We also discuss the abelian theory without Chern-Simons term and argue that flavour symmetry is not broken. Finally, we also predict novel type 0B string dynamics from QCD dynamics.


Brane Dynamics in Gauge Theories Chern-Simons Theories Duality in Gauge Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  2. [2]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    P.-S. Hsin and N. Seiberg, Level/rank duality and Chern-Simons-matter theories, JHEP 09 (2016) 095 [arXiv:1607.07457] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Karch and D. Tong, Particle-vortex duality from 3d bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and asuperconductors, JHEP 05 (2017) 159 [arXiv:1606.01912] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD 3, JHEP 01 (2018) 109 [arXiv:1706.08755] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Armoni, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Metastable vacua in large-N QCD 3, arXiv:1905.01797 [INSPIRE].
  9. [9]
    A. Armoni and V. Niarchos, Phases of QCD3 from non-SUSY Seiberg duality and brane dynamics, Phys. Rev. D 97 (2018) 106001 [arXiv:1711.04832] [INSPIRE].ADSGoogle Scholar
  10. [10]
    K. Jensen and A. Karch, Embedding three-dimensional bosonization dualities into string theory, JHEP 12 (2017) 031 [arXiv:1709.07872] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Argurio, M. Bertolini, F. Bigazzi, A.L. Cotrone and P. Niro, QCD domain walls, Chern-Simons theories and holography, JHEP 09 (2018) 090 [arXiv:1806.08292] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Kachru, M. Mulligan, G. Torroba and H. Wang, Nonsupersymmetric dualities from mirror symmetry, Phys. Rev. Lett. 118 (2017) 011602 [arXiv:1609.02149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    G. Gur-Ari and R. Yacoby, Three dimensional bosonization from supersymmetry, JHEP 11 (2015) 013 [arXiv:1507.04378] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Giveon and D. Kutasov, Seiberg duality in Chern-Simons theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Armoni, M. Shifman and G. Veneziano, Exact results in non-supersymmetric large N orientifold field theories, Nucl. Phys. B 667 (2003) 170 [hep-th/0302163] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A. Armoni, M. Shifman and G. Veneziano, From super Yang-Mills theory to QCD: planar equivalence and its implications, in From fields to strings: circumnavigating theoretical physics. Ian Kogan memorial collection, M. Shifman, A. Vainshtein and J. Wheater eds., World Scientific, Singapore (2004), pg. 353 [hep-th/0403071] [CERN-PH-TH-2004-022] [INSPIRE].
  17. [17]
    S. Murthy and J. Troost, D-branes in non-critical superstrings and duality in N = 1 gauge theories with flavor, JHEP 10 (2006) 019 [hep-th/0606203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Fotopoulos, V. Niarchos and N. Prezas, D-branes and SQCD in non-critical superstring theory, JHEP 10 (2005) 081 [hep-th/0504010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D. Israel and V. Niarchos, Tree-level stability without spacetime fermions: novel examples in string theory, JHEP 07 (2007) 065 [arXiv:0705.2140] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Armoni, D. Israel, G. Moraitis and V. Niarchos, Non-supersymmetric Seiberg duality, orientifold QCD and non-critical strings, Phys. Rev. D 77 (2008) 105009 [arXiv:0801.0762] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [Erratum ibid. 376 (2003) 407] [hep-th/0204089] [INSPIRE].
  22. [22]
    R. Blumenhagen, A. Font and D. Lüst, Nonsupersymmetric gauge theories from D-branes in type 0 string theory, Nucl. Phys. B 560 (1999) 66 [hep-th/9906101] [INSPIRE].
  23. [23]
    R. Blumenhagen, A. Font and D. Lüst, Tachyon free orientifolds of type 0B strings in various dimensions, Nucl. Phys. B 558 (1999) 159 [hep-th/9904069] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Sagnotti, Surprises in open string perturbation theory, Nucl. Phys. Proc. Suppl. B 56 (1997) 332 [hep-th/9702093] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Sagnotti, Some properties of open string theories, in Supersymmetry and unification of fundamental interactions. Proceedings, International Workshop, SUSY 95, Palaiseau, France, 15–19 May 1995, pg. 473 [hep-th/9509080] [INSPIRE].
  26. [26]
    M. Ünsal and L.G. Yaffe, (In)validity of large N orientifold equivalence, Phys. Rev. D 74 (2006) 105019 [hep-th/0608180] [INSPIRE].
  27. [27]
    J. Polchinski, S. Chaudhuri and C.V. Johnson, Notes on D-branes, hep-th/9602052 [INSPIRE].
  28. [28]
    A.M. Uranga, Comments on nonsupersymmetric orientifolds at strong coupling, JHEP 02 (2000) 041 [hep-th/9912145] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    I.R. Klebanov and A.A. Tseytlin, D-branes and dual gauge theories in type 0 strings, Nucl. Phys. B 546 (1999) 155 [hep-th/9811035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983 [hep-th/9802067] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    S. Elitzur, A. Giveon and D. Kutasov, Branes and N = 1 duality in string theory, Phys. Lett. B 400 (1997) 269 [hep-th/9702014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    N.J. Evans, C.V. Johnson and A.D. Shapere, Orientifolds, branes and duality of 4D gauge theories, Nucl. Phys. B 505 (1997) 251 [hep-th/9703210] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    A. Armoni and E. Ireson, Level-rank duality in Chern-Simons theory from a non-supersymmetric brane configuration, Phys. Lett. B 739 (2014) 387 [arXiv:1408.4633] [INSPIRE].
  35. [35]
    C. Córdova, P.-S. Hsin and N. Seiberg, Time-reversal symmetry, anomalies and dualities in (2 + 1)d, SciPost Phys. 5 (2018) 006 [arXiv:1712.08639] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsSwansea UniversitySwanseaU.K.

Personalised recommendations