Skip to main content

Weaving the exotic web

A preprint version of the article is available at arXiv.

Abstract

String and M-theory contain a family of branes forming U -duality multiplets. In particular, standard branes with codimension higher than or equal to two, can be explicitly found as supergravity solutions. However, whether domain-wall branes and space-filling branes can be found as supergravity solutions is still unclear. In this paper, we firstly provide a full list of exotic branes in type II string theory or M-theory compactified to three or higher dimensions. We show how to systematically obtain backgrounds of exotic domain-wall branes and space-filling branes as solutions of the double field theory or the exceptional field theory. Such solutions explicitly depend on the winding coordinates and cannot be given as solutions of the conventional supergravity theories. However, as the domain-wall solutions depend linearly on the winding coordinates, we describe them as solutions of deformed supergravities such as the Romans massive IIA supergravity or lower-dimensional gauged supergravities. We establish explicit relations among the domain-wall branes, the mixed-symmetry potentials, the locally non-geometric fluxes, and deformed supergravities.

References

  1. S. Elitzur, A. Giveon, D. Kutasov and E. Rabinovici, Algebraic aspects of matrix theory on T d, Nucl. Phys. B 509 (1998) 122 [hep-th/9707217] [INSPIRE].

    ADS  Article  Google Scholar 

  2. M. Blau and M. O’Loughlin, Aspects of U duality in matrix theory, Nucl. Phys. B 525 (1998) 182 [hep-th/9712047] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. C.M. Hull, U duality and BPS spectrum of super Yang-Mills theory and M-theory, JHEP 07 (1998) 018 [hep-th/9712075] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. N.A. Obers, B. Pioline and E. Rabinovici, M theory and U duality on T d with gauge backgrounds, Nucl. Phys. B 525 (1998) 163 [hep-th/9712084] [INSPIRE].

  5. N.A. Obers and B. Pioline, U duality and M-theory, Phys. Rept. 318 (1999) 113 [hep-th/9809039] [INSPIRE].

    ADS  Article  Google Scholar 

  6. E. Eyras and Y. Lozano, Exotic branes and nonperturbative seven-branes, Nucl. Phys. B 573 (2000) 735 [hep-th/9908094] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. E.A. Bergshoeff and F. Riccioni, D-brane Wess-Zumino terms and U-duality, JHEP 11 (2010) 139 [arXiv:1009.4657] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. E.A. Bergshoeff and F. Riccioni, String solitons and T-duality, JHEP 05 (2011) 131 [arXiv:1102.0934] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281 [arXiv:1106.0212] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. E.A. Bergshoeff and F. Riccioni, Branes and wrapping rules, Phys. Lett. B 704 (2011) 367 [arXiv:1108.5067] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].

  13. E.A. Bergshoeff, A. Marrani and F. Riccioni, Brane orbits, Nucl. Phys. B 861 (2012) 104 [arXiv:1201.5819] [INSPIRE].

  14. E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric domain walls, Phys. Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].

  15. E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, Dual double field theory, JHEP 06 (2016) 026 [arXiv:1603.07380] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. D.M. Lombardo, F. Riccioni and S. Risoli, P fluxes and exotic branes, JHEP 12 (2016) 114 [arXiv:1610.07975] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. E.A. Bergshoeff and F. Riccioni, Wrapping rules (in) string theory, JHEP 01 (2018) 046 [arXiv:1710.00642] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].

  19. I. Schnakenburg and P.C. West, Kac-Moody symmetries of IIB supergravity, Phys. Lett. B 517 (2001) 421 [hep-th/0107181] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. A. Kleinschmidt, I. Schnakenburg and P.C. West, Very extended Kac-Moody algebras and their interpretation at low levels, Class. Quant. Grav. 21 (2004) 2493 [hep-th/0309198] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. F. Riccioni and P.C. West, Dual fields and E 11, Phys. Lett. B 645 (2007) 286 [hep-th/0612001] [INSPIRE].

  22. A.G. Tumanov and P. West, E 11 must be a symmetry of strings and branes, Phys. Lett. B 759 (2016) 663 [arXiv:1512.01644] [INSPIRE].

    ADS  Article  Google Scholar 

  23. A.G. Tumanov and P. West, E 11 in 11D, Phys. Lett. B 758 (2016) 278 [arXiv:1601.03974] [INSPIRE].

  24. P. West, E 11 , brane dynamics and duality symmetries, Int. J. Mod. Phys. A 33 (2018) 1850080 [arXiv:1801.00669] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].

  26. A. Kleinschmidt and P.C. West, Representations of G +++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [INSPIRE].

  28. P.C. West, Brane dynamics, central charges and E 11, JHEP 03 (2005) 077 [hep-th/0412336] [INSPIRE].

  29. P.P. Cook and P.C. West, Charge multiplets and masses for E 11, JHEP 11 (2008) 091 [arXiv:0805.4451] [INSPIRE].

  30. A. Kleinschmidt, Counting supersymmetric branes, JHEP 10 (2011) 144 [arXiv:1109.2025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. E.A. Bergshoeff and F. Riccioni, Heterotic wrapping rules, JHEP 01 (2013) 005 [arXiv:1210.1422] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. E.A. Bergshoeff, C. Condeescu, G. Pradisi and F. Riccioni, Heterotic-type II duality and wrapping rules, JHEP 12 (2013) 057 [arXiv:1311.3578] [INSPIRE].

    ADS  Article  Google Scholar 

  33. G. Pradisi and F. Riccioni, Non-geometric orbifolds and wrapping rules, JHEP 09 (2014) 170 [arXiv:1407.5576] [INSPIRE].

    ADS  Article  Google Scholar 

  34. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. W. Siegel, Manifest duality in low-energy superstrings, in International Conference on Strings 93, Berkeley, CA, U.S.A., 24-29 May 1993, pg. 353 [hep-th/9308133] [INSPIRE].

  37. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].

  44. O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].

    ADS  Article  Google Scholar 

  45. O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].

  49. I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. 85 (2012) 089908] [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].

  50. I. Jeon, K. Lee and J.-H. Park, Ramond-Ramond cohomology and O(D, D) T-duality, JHEP 09 (2012) 079 [arXiv:1206.3478] [INSPIRE].

  51. I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy unification of type IIA and IIB supergravities under N = 2 D = 10 supersymmetric double field theory, Phys. Lett. B 723 (2013) 245 [arXiv:1210.5078] [INSPIRE].

  52. P.C. West, Hidden superconformal symmetry in M-theory, JHEP 08 (2000) 007 [hep-th/0005270] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. C. Hillmann, E 7(7) and d = 11 supergravity, Ph.D. thesis, Humboldt U., Berlin, 2008. arXiv:0902.1509 [INSPIRE].

  54. D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

    ADS  Article  Google Scholar 

  57. P. West, E 11 , generalised space-time and equations of motion in four dimensions, JHEP 12 (2012) 068 [arXiv:1206.7045] [INSPIRE].

  58. O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].

  59. O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

  60. O. Hohm and H. Samtleben, Exceptional field theory II: E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].

  61. O. Hohm and H. Samtleben, Exceptional field theory III: E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

  62. O. Hohm and Y.-N. Wang, Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory, JHEP 04 (2015) 050 [arXiv:1501.01600] [INSPIRE].

  63. A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP 06 (2015) 088 [arXiv:1504.01523] [INSPIRE].

  64. E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163] [INSPIRE].

  65. D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)R + exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].

  66. L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  67. O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP 08 (2016) 154 [arXiv:1604.08602] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  69. G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the η-deformed AdS 5 × S 5 superstring, T-duality and modified type-II equations, Nucl. Phys. B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE].

  70. L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP 06 (2016) 174 [arXiv:1605.04884] [INSPIRE].

  71. Y. Sakatani, S. Uehara and K. Yoshida, Generalized gravity from modified DFT, JHEP 04 (2017) 123 [arXiv:1611.05856] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. J.-I. Sakamoto, Y. Sakatani and K. Yoshida, Weyl invariance for generalized supergravity backgrounds from the doubled formalism, PTEP 2017 (2017) 053B07 [arXiv:1703.09213] [INSPIRE].

  73. A. Baguet, M. Magro and H. Samtleben, Generalized IIB supergravity from exceptional field theory, JHEP 03 (2017) 100 [arXiv:1612.07210] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. I. Bakhmatov, D. Berman, A. Kleinschmidt, E. Musaev and R. Otsuki, Exotic branes in exceptional field theory: the SL(5) duality group, JHEP 08 (2018) 021 [arXiv:1710.09740] [INSPIRE].

  75. E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P.K. Townsend, Duality of type-II 7 branes and 8 branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [INSPIRE].

  76. P. Meessen and T. Ortín, An SL(2, Z) multiplet of nine-dimensional type-II supergravity theories, Nucl. Phys. B 541 (1999) 195 [hep-th/9806120] [INSPIRE].

  77. F. Cordaro, P. Fré, L. Gualtieri, P. Termonia and M. Trigiante, N = 8 gaugings revisited: an exhaustive classification, Nucl. Phys. B 532 (1998) 245 [hep-th/9804056] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  78. B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].

  79. E.A. Bergshoeff, V.A. Penas, F. Riccioni and S. Risoli, Non-geometric fluxes and mixed-symmetry potentials, JHEP 11 (2015) 020 [arXiv:1508.00780] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  80. P.P. Cook, Exotic E 11 branes as composite gravitational solutions, Class. Quant. Grav. 26 (2009) 235023 [arXiv:0908.0485] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  81. L. Houart, A. Kleinschmidt and J. Lindman Hornlund, Some algebraic aspects of half-BPS bound states in M-theory, JHEP 03 (2010) 022 [arXiv:0911.5141] [INSPIRE].

    ADS  Article  Google Scholar 

  82. P.P. Cook, Bound states of string theory and beyond, JHEP 03 (2012) 028 [arXiv:1109.6595] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  83. E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP 08 (2005) 098 [hep-th/0506013] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  84. E.A. Bergshoeff, J. Hartong, T. Ortín and D. Roest, Seven-branes and supersymmetry, JHEP 02 (2007) 003 [hep-th/0612072] [INSPIRE].

  85. E. Bergshoeff, J. Hartong and D. Sorokin, Q7-branes and their coupling to IIB supergravity, JHEP 12 (2007) 079 [arXiv:0708.2287] [INSPIRE].

  86. E.A. Bergshoeff, O. Hohm and F. Riccioni, Exotic dual of type II double field theory, Phys. Lett. B 767 (2017) 374 [arXiv:1612.02691] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  87. C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP 03 (2015) 144 [arXiv:1412.0635] [INSPIRE].

  88. M. Günaydin, D. Lüst and E. Malek, Non-associativity in non-geometric string and M-theory backgrounds, the algebra of octonions and missing momentum modes, JHEP 11 (2016) 027 [arXiv:1607.06474] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  89. D. Lüst, E. Malek and M. Syvari, Locally non-geometric fluxes and missing momenta in M-theory, JHEP 01 (2018) 050 [arXiv:1710.05919] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  90. G. Dibitetto, F. Riccioni and S. Risoli, Space-filling branes & gaugings, JHEP 07 (2018) 006 [arXiv:1803.07023] [INSPIRE].

  91. G. Dibitetto, J.J. Fernández-Melgarejo, D. Marqués and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  92. D.S. Berman, E.T. Musaev and R. Otsuki, Exotic branes in exceptional field theory: E 7(7) and beyond, arXiv:1806.00430 [INSPIRE].

  93. J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  94. J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  95. O. Aharony, String theory dualities from M-theory, Nucl. Phys. B 476 (1996) 470 [hep-th/9604103] [INSPIRE].

  96. T. Nutma, SimpLie, a simple program for Lie algebras webpage, https://github.com/teake/simplie.

  97. E. Eyras, B. Janssen and Y. Lozano, Five-branes, KK-monopoles and T-duality, Nucl. Phys. B 531 (1998) 275 [hep-th/9806169] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  98. A. Chatzistavrakidis, F.F. Gautason, G. Moutsopoulos and M. Zagermann, Effective actions of nongeometric five-branes, Phys. Rev. D 89 (2014) 066004 [arXiv:1309.2653] [INSPIRE].

  99. T. Kimura, S. Sasaki and M. Yata, World-volume effective actions of exotic five-branes, JHEP 07 (2014) 127 [arXiv:1404.5442] [INSPIRE].

    ADS  Article  Google Scholar 

  100. D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].

    ADS  Article  Google Scholar 

  101. Y. Sakatani, Exotic branes and non-geometric fluxes, JHEP 03 (2015) 135 [arXiv:1412.8769] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  102. T. Kimura, S. Sasaki and M. Yata, World-volume effective action of exotic five-brane in M-theory, JHEP 02 (2016) 168 [arXiv:1601.05589] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  103. C.D.A. Blair and E.T. Musaev, Five-brane actions in double field theory, JHEP 03 (2018) 111 [arXiv:1712.01739] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  104. F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  105. I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, JHEP 10 (2016) 076 [arXiv:1607.05450] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  106. T. Kimura, S. Sasaki and K. Shiozawa, Worldsheet instanton corrections to five-branes and waves in double field theory, JHEP 07 (2018) 001 [arXiv:1803.11087] [INSPIRE].

    ADS  Article  Google Scholar 

  107. M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  108. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  109. F. Marchesano and W. Schulgin, Non-geometric fluxes as supergravity backgrounds, Phys. Rev. D 76 (2007) 041901 [arXiv:0704.3272] [INSPIRE].

  110. B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].

  111. N. Halmagyi, Non-geometric string backgrounds and worldsheet algebras, JHEP 07 (2008) 137 [arXiv:0805.4571] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  112. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  113. D. Geissbühler, D. Marqués, C. Núñez and V. Penas, Exploring double field theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  114. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].

    ADS  Article  Google Scholar 

  115. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, A bi-invariant Einstein-Hilbert action for the non-geometric string, Phys. Lett. B 720 (2013) 215 [arXiv:1210.1591] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  116. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122 [arXiv:1211.0030] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  117. R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The intriguing structure of non-geometric frames in string theory, Fortsch. Phys. 61 (2013) 893 [arXiv:1304.2784] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  118. T. Asakawa, H. Muraki and S. Watamura, Gravity theory on Poisson manifold with R-flux, Fortsch. Phys. 63 (2015) 683 [arXiv:1508.05706] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  119. Y. Kaneko, H. Muraki and S. Watamura, Contravariant gravity on Poisson manifolds and Einstein gravity, Class. Quant. Grav. 34 (2017) 115002 [arXiv:1610.06554] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  120. Y. Sakatani and S. Uehara, Connecting M-theory and type IIB parameterizations in exceptional field theory, PTEP 2017 (2017) 043B05 [arXiv:1701.07819] [INSPIRE].

  121. K. Lee, S.-J. Rey and Y. Sakatani, Effective action for non-geometric fluxes duality covariant actions, JHEP 07 (2017) 075 [arXiv:1612.08738] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  122. G. Aldazabal, P.G. Camara, A. Font and L.E. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  123. G. Aldazabal, P.G. Camara and J.A. Rosabal, Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21 [arXiv:0811.2900] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  124. G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and generalized geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  125. T. Ortín, Gravity and strings, Cambridge University Press, Cambridge, U.K., (2015) [INSPIRE].

  126. T. Ortín, SL(2, R) duality covariance of Killing spinors in axion-dilaton black holes, Phys. Rev. D 51 (1995) 790 [hep-th/9404035] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  127. Y. Imamura, Supersymmetries and BPS configurations on anti-de Sitter space, Nucl. Phys. B 537 (1999) 184 [hep-th/9807179] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  128. T. Kimura, Supersymmetry projection rules on exotic branes, PTEP 2016 (2016) 053B05 [arXiv:1601.02175] [INSPIRE].

  129. G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].

  130. D. Geissbühler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].

  131. M. Graña and D. Marqués, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  132. D.S. Berman and K. Lee, Supersymmetry for gauged double field theory and generalised Scherk-Schwarz reductions, Nucl. Phys. B 881 (2014) 369 [arXiv:1305.2747] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  133. W. Cho, J.J. Fernández-Melgarejo, I. Jeon and J.-H. Park, Supersymmetric gauged double field theory: systematic derivation by virtue of twist, JHEP 08 (2015) 084 [arXiv:1505.01301] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  134. E. Bergshoeff, T. de Wit, U. Gran, R. Linares and D. Roest, (Non)Abelian gauged supergravities in nine-dimensions, JHEP 10 (2002) 061 [hep-th/0209205] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  135. J.J. Fernández-Melgarejo, T. Ortín and E. Torrente-Lujan, The general gaugings of maximal d = 9 supergravity, JHEP 10 (2011) 068 [arXiv:1106.1760] [INSPIRE].

  136. A. Catal-Ozer, Massive deformations of type IIA theory within double field theory, JHEP 02 (2018) 179 [arXiv:1706.08883] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  137. E. Bergshoeff, Y. Lozano and T. Ortín, Massive branes, Nucl. Phys. B 518 (1998) 363 [hep-th/9712115] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  138. E. Bergshoeff and J.P. van der Schaar, On M nine-branes, Class. Quant. Grav. 16 (1999) 23 [hep-th/9806069] [INSPIRE].

    ADS  Article  Google Scholar 

  139. M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  140. D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].

  141. H. Godazgar, M. Godazgar and M.J. Perry, E 8 duality and dual gravity, JHEP 06 (2013) 044 [arXiv:1303.2035] [INSPIRE].

  142. E. Malek, U-duality in three and four dimensions, Int. J. Mod. Phys. A 32 (2017) 1750169 [arXiv:1205.6403] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  143. E. Malek, Timelike U-dualities in generalised geometry, JHEP 11 (2013) 185 [arXiv:1301.0543] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  144. A.G. Tumanov and P. West, Generalised vielbeins and non-linear realisations, JHEP 10 (2014) 009 [arXiv:1405.7894] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José J. Fernández-Melgarejo.

Additional information

ArXiv ePrint: 1805.12117

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Melgarejo, J.J., Kimura, T. & Sakatani, Y. Weaving the exotic web. J. High Energ. Phys. 2018, 72 (2018). https://doi.org/10.1007/JHEP09(2018)072

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2018)072

Keywords

  • D-branes
  • Flux compactifications
  • String Duality
  • Supergravity Models