Journal of High Energy Physics

, 2017:57 | Cite as

Comments on the random Thirring model

  • Micha Berkooz
  • Prithvi Narayan
  • Moshe RozaliEmail author
  • Joan Simón
Open Access
Regular Article - Theoretical Physics


The Thirring model with random couplings is a translationally invariant generalisation of the SYK model to 1+1 dimensions, which is tractable in the large N limit. We compute its two point function, at large distances, for any strength of the random coupling. For a given realisation, the couplings contain both irrelevant and relevant marginal operators, but statistically, in the large N limit, the random couplings are overall always marginally irrelevant, in sharp distinction to the usual Thirring model. We show the leading term to the β function in conformal perturbation theory, which is quadratic in the couplings, vanishes, while its usually subleading cubic term matches our RG flow.


1/N Expansion Gauge-gravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  2. [2]
    A. Kitaev, A simple model of quantum holography (part 1), talk at KITP,, University of California, Santa Barbara U.S.A., 7 April 2015.
  3. [3]
    A. Kitaev, A simple model of quantum holography (part 2), talk at KITP,, University of California, Santa Barbara U.S.A., 27 May 2015.
  4. [4]
    J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A.P. Reynolds and S.F. Ross, Butterflies with rotation and charge, Class. Quant. Grav. 33 (2016) 215008 [arXiv:1604.04099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, Progr. Theor. Exper. Phys. 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  14. [14]
    K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
  18. [18]
    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D.J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher dimensional generalizations of the SYK model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry protected topological states, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Anninos, T. Anous and F. Denef, Disordered quivers and cold horizons, JHEP 12 (2016) 071 [arXiv:1603.00453] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Jevicki, K. Suzuki and J. Yoon, Bi-local holography in the SYK model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Jevicki and K. Suzuki, Bi-local holography in the SYK model: perturbations, JHEP 11 (2016) 046 [arXiv:1608.07567] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  26. [26]
    S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95 (2017) 134302 [arXiv:1610.04619] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].
  28. [28]
    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [Addendum ibid. D 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].
  29. [29]
    E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].
  30. [30]
    J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Blake and A. Donos, Diffusion and chaos from near AdS 2 horizons, JHEP 02 (2017) 013 [arXiv:1611.09380] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Peng, M. Spradlin and A. Volovich, A supersymmetric SYK-like tensor model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    Y. Liu, M.A. Nowak and I. Zahed, Disorder in the Sachdev-Yee-Kitaev model, arXiv:1612.05233 [INSPIRE].
  36. [36]
    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum chaos and holographic tensor models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    J.M. Magan, Decoherence and microscopic diffusion at SYK, arXiv:1612.06765 [INSPIRE].
  38. [38]
    F. Ferrari, The large D limit of planar diagrams, arXiv:1701.01171 [INSPIRE].
  39. [39]
    A.M. García-García and J.J.M. Verbaarschot, Analytical spectral density of the Sachdev-Ye-Kitaev model at finite N, arXiv:1701.06593 [INSPIRE].
  40. [40]
    T. Li, J. Liu, Y. Xin and Y. Zhou, Supersymmetric SYK model and random matrix theory, JHEP 06 (2017) 111 [arXiv:1702.01738] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Gurau, Quenched equals annealed at leading order in the colored SYK model, arXiv:1702.04228 [INSPIRE].
  42. [42]
    G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, arXiv:1702.04266 [INSPIRE].
  43. [43]
    M. Moshe and J. Zinn-Justin, Quantum field theory in the large-N limit: a review, Phys. Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1 [INSPIRE].Google Scholar
  45. [45]
    D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D 10 (1974) 3235 [INSPIRE].ADSGoogle Scholar
  46. [46]
    V. Balasubramanian, M. Berkooz, S.F. Ross and J. Simon, Black holes, entanglement and random matrices, Class. Quant. Grav. 31 (2014) 185009 [arXiv:1404.6198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    N. Behr and A. Konechny, Renormalization and redundancy in 2d quantum field theories, JHEP 02 (2014) 001 [arXiv:1310.4185] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    Y. Imry and S.-K. Ma, Random-field instability of the ordered state of continuous symmetry, Phys. Rev. Lett. 35 (1975) 1399 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Turiaci and H. Verlinde, Towards a 2d QFT analog of the SYK model, arXiv:1701.00528 [INSPIRE].
  50. [50]
    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam The Netherlands, (2007).Google Scholar
  51. [51]
    J.L. Cardy, Conformal invariance and statistical mechanics, Les Houches France, (1988) [INSPIRE].
  52. [52]
    M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ninth Dover printing, tenth GPO printing ed., Dover, New York U.S.A., (1964).Google Scholar
  53. [53]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York U.S.A., (1997) [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Micha Berkooz
    • 1
  • Prithvi Narayan
    • 2
  • Moshe Rozali
    • 3
    Email author
  • Joan Simón
    • 4
    • 5
  1. 1.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.International Centre for Theoretical SciencesHesaraghattaIndia
  3. 3.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  4. 4.School of Mathematics and Maxwell Institute for Mathematical SciencesUniversity of EdinburghEdinburghU.K.
  5. 5.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations