Journal of High Energy Physics

, 2013:51 | Cite as

Noncommutative gauge theories on \( \mathbb{R}_{\theta}^2 \) as matrix models

  • Pierre Martinetti
  • Patrizia Vitale
  • Jean-Christophe Wallet
Open Access


We study a class of noncommutative gauge theory models on 2-dimensional Moyal space from the viewpoint of matrix models and explore some related properties. Expanding the action around symmetric vacua generates non local matrix models with polynomial interaction terms. For a particular vacuum, we can invert the kinetic operator which is related to a Jacobi operator. The resulting propagator can be expressed in terms of Chebyschev polynomials of second kind. We show that non vanishing correlations exist at large separations. General considerations on the kinetic operators stemming from the other class of symmetric vacua, indicate that only one class of symmetric vacua should lead to fast decaying propagators. The quantum stability of the vacuum is briefly discussed.


Non-Commutative Geometry Gauge Symmetry Matrix Models Field Theories in Lower Dimensions 


  1. [1]
    A. Connes, Noncommutative geometry, Academic Press Inc., San Diego, U.S.A. (1994), available at
  2. [2]
    A. Connes and M. Marcolli, A walk in the noncommutative garden, available online (2006).
  3. [3]
    G. Landi, An introduction to noncommutative spaces and their geometries, Lectures notes in physics, Springer-Verlag, Germany (1997).Google Scholar
  4. [4]
    J. M. Gracia-Bondía, J. C. Várilly and H. Figueroa, Elements of noncommutative geometry, Birkhaüser Advanced Texts, Birkhaüser, Switzerland (2001).Google Scholar
  5. [5]
    S. Doplicher, K. Fredenhagen and J. Roberts, Space-time quantization induced by classical gravity, Phys. Lett. B 331 (1994) 39 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J. Madore, The commutative limit of a matrix geometry, J. Math. Phys. 32 (1991) 332 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  8. [8]
    H. Grosse and J. Madore, A noncommutative version of the Schwinger model, Phys. Lett. B 283 (1992) 218 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    A. Balachandran, S. Kurkcuoglu and S. Vaidya, Lectures on fuzzy and fuzzy SUSY physics, hep-th/0511114 [INSPIRE].
  10. [10]
    V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030 [hep-th/9903205] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    L. Susskind, The quantum Hall fluid and noncommutative Chern-Simons theory, hep-th/0101029 [INSPIRE].
  13. [13]
    F. Chandelier, Y. Georgelin, T. Masson and J.-C. Wallet, Quantum Hall conductivity in a Landau type model with a realistic geometry, Ann. Phys. 305 (2003) 60.MathSciNetADSCrossRefMATHGoogle Scholar
  14. [14]
    F. Chandelier, Y. Georgelin, T. Masson and J.-C. Wallet, Quantum Hall conductivity in a Landau type model with a realistic geometry II, Ann. Phys. 314 (2004) 476.MathSciNetADSCrossRefMATHGoogle Scholar
  15. [15]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  16. [16]
    R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    J.-C. Wallet, Noncommutative induced gauge theories on Moyal spaces, J. Phys. Conf. Ser. 103 (2008) 012007 [arXiv:0708.2471] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP 02 (2000) 020 [hep-th/9912072] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I. Chepelev and R. Roiban, Renormalization of quantum field theories on noncommutative R d . 1. Scalars, JHEP 05 (2000) 037 [hep-th/9911098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    H. Grosse and R. Wulkenhaar, Power counting theorem for nonlocal matrix models and renormalization, Commun. Math. Phys. 254 (2005) 91 [hep-th/0305066] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  21. [21]
    H. Grosse and R. Wulkenhaar, Renormalization of ϕ 4 theory on noncommutative R 2 in the matrix base, JHEP 12 (2003) 019 [hep-th/0307017] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    H. Grosse and R. Wulkenhaar, Renormalization of ϕ 4 theory on noncommutative R 4 in the matrix base, Commun. Math. Phys. 256 (2005) 305 [hep-th/0401128] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  23. [23]
    H. Grosse and H. Steinacker, A nontrivial solvable noncommutative ϕ 3 model in 4 dimensions, JHEP 08 (2006) 008 [hep-th/0603052] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    H. Grosse and H. Steinacker, Renormalization of the noncommutative ϕ 3 model through the Kontsevich model, Nucl. Phys. B 746 (2006) 202 [hep-th/0512203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    A. de Goursac and J.-C. Wallet, Symmetries of noncommutative scalar field theory, J. Phys. 44 (2011) 055401 [arXiv:0911.2645] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    A. de Goursac, A. Tanasa and J.-C. Wallet, Vacuum configurations for renormalizable non-commutative scalar models, Eur. Phys. J. C 53 (2008) 459 [arXiv:0709.3950] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E. Langmann, R. Szabo and K. Zarembo, Exact solution of quantum field theory on noncommutative phase spaces, JHEP 01 (2004) 017 [hep-th/0308043] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E. Langmann, R. Szabo and K. Zarembo, Exact solution of noncommutative field theory in background magnetic fields, Phys. Lett. B 569 (2003) 95 [hep-th/0303082] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    M. Burić and M. Wohlgenannt, Geometry of the Grosse-Wulkenhaar Model, JHEP 03 (2010) 053 [arXiv:0902.3408] [INSPIRE].ADSGoogle Scholar
  30. [30]
    F. Vignes-Tourneret, Renormalization of the orientable non-commutative Gross-Neveu model, Ann. H. Poincaré 8 (2007) 427.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    A. Lakhoua, F. Vignes-Tourneret and J.-C. Wallet, One-loop β-functions for the orientable non-commutative Gross-Neveu model, Eur. Phys. J. C 52 (2007) 735 [hep-th/0701170] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Grosse and R. Wulkenhaar, The β-function in duality covariant noncommutative ϕ 4 theory, Eur. Phys. J. C 35 (2004) 277 [hep-th/0402093] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    M. Disertori, R. Gurau, J. Magnen and V. Rivasseau, Vanishing of β-function of non commutative ϕ 4(4) theory to all orders, Phys. Lett. B 649 (2007) 95 [hep-th/0612251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    E. Langmann and R.J. Szabo, Duality in scalar field theory on noncommutative phase spaces, Phys. Lett. B 533 (2002) 168 [hep-th/0202039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    H. Grosse and R. Wulkenhaar, Self-dual noncommutative ϕ 4 -theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory, arXiv:1205.0465 [INSPIRE].
  36. [36]
    P. Vitale and J.-C. Wallet, Noncommutative field theories on \( R_{\lambda}^3 \) : toward UV/IR mixing freedom, JHEP 04 (2013) 115 [arXiv:1212.5131] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    S. Galluccio, F. Lizzi and P. Vitale, Translation invariance, commutation relations and ultraviolet/infrared mixing, JHEP 09 (2009) 054 [arXiv:0907.3640] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Galluccio, F. Lizzi and P. Vitale, Twisted noncommutative field theory with the Wick-Voros and Moyal products, Phys. Rev. D 78 (2008) 085007 [arXiv:0810.2095].MathSciNetADSGoogle Scholar
  39. [39]
    A. Matusis, L. Susskind and N. Toumbas, The IR/UV connection in the noncommutative gauge theories, JHEP 12 (2000) 002 [hep-th/0002075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    M. Hayakawa, Perturbative analysis on infrared aspects of noncommutative QED on R 4, Phys. Lett. B 478 (2000) 394 [hep-th/9912094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    D. Blaschke, S. Hohenegger and M. Schweda, Divergences in non-commutative gauge theories with the Slavnov term, JHEP 11 (2005) 041 [hep-th/0510100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    D.N. Blaschke, H. Grosse and M. Schweda, Non-commutative U(1) gauge theory on R 4 with oscillator term and BRST symmetry, Europhys. Lett. 79 (2007) 61002.MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    M. Dubois-Violette, R. Kerner and J. Madore, Noncommutative differential geometry and new models of gauge theory, J. Math. Phys. 31 (1990) 323 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  44. [44]
    A. de Goursac, J.-C. Wallet and R. Wulkenhaar, Noncommutative induced gauge theory, Eur. Phys. J. C 51 (2007) 977 [hep-th/0703075] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    H. Grosse and M. Wohlgenannt, Induced gauge theory on a noncommutative space, Eur. Phys. J. C 52 (2007) 435 [hep-th/0703169] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    J.-C. Wallet, Derivations of the Moyal algebra and noncommutative gauge theories, SIGMA 5 (2009) 013 [arXiv:0811.3850] [INSPIRE].MathSciNetGoogle Scholar
  47. [47]
    E. Cagnache, T. Masson and J.-C. Wallet, Noncommutative Yang-Mills-Higgs actions from derivation-based differential calculus, J. Noncommut. Geom. 5 (2011) 39 [arXiv:0804.3061] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    A. de Goursac, T. Masson and J.-C. Wallet, Noncommutative epsilon-graded connections, J. Noncommut. Geom. 6 (2012) 343 [arXiv:0811.3567] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    H. Grosse and R. Wulkenhaar, 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory, J. Geom. Phys. 62 (2012) 1583.MathSciNetADSCrossRefMATHGoogle Scholar
  50. [50]
    J.-C. Wallet, Connes distance by examples: homothetic spectral metric spaces, Rev. Math. Phys. 24 (2012) 1250027 [arXiv:1112.3285] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  51. [51]
    E. Cagnache, E. Jolibois and J.-C. Wallet, Spectral distances: results for Moyal plane and noncommutative torus, SIGMA 6 (2010) 026 [arXiv:0912.4185] [INSPIRE].Google Scholar
  52. [52]
    E. Cagnache, F. D’Andrea, P. Martinetti and J.-C. Wallet, The spectral distance on the Moyal plane, J. Geom. Phys. 61 (2011) 1881 [arXiv:0912.0906] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  53. [53]
    A. de Goursac, J.-C. Wallet and R. Wulkenhaar, On the vacuum states for noncommutative gauge theory, Eur. Phys. J. C 56 (2008) 293 [arXiv:0803.3035] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    D.N. Blaschke, H. Grosse, E. Kronberger, M. Schweda and M. Wohlgenannt, Loop calculations for the non-commutative U(1) gauge field model with oscillator term, Eur. Phys. J. C 67 (2010) 575 [arXiv:0912.3642] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D.N. Blaschke, F. Gieres, E. Kronberger, M. Schweda and M. Wohlgenannt, Translation-invariant models for non-commutative gauge fields, J. Phys. A 41 (2008) 252002 [arXiv:0804.1914] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    D.N. Blaschke, A. Rofner, R.I. Sedmik and M. Wohlgenannt, On non-commutative U(1) gauge models and renormalizability, J. Phys. A 43 (2010) 425401 [arXiv:0912.2634] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    D.N. Blaschke, A new approach to non-commutative U(N ) gauge fields, Europhys. Lett. 91 (2010) 11001.ADSCrossRefGoogle Scholar
  58. [58]
    D.N. Blaschke, Towards consistent non-commutative gauge theories, Ph.D. thesis, Vienna University of Technology, Vienna, Austria (2008), available at
  59. [59]
    D.N. Blaschke, H. Grosse and J.-C. Wallet, Slavnov-Taylor identities, non-commutative gauge theories and infrared divergences, JHEP 06 (2013) 038 [arXiv:1302.2903] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  60. [60]
    D.N. Blaschke et al., On the problem of renormalizability in non-commutative gauge field models: a critical review, Fortsch. Phys. 58 (2010) 364 [arXiv:0908.0467] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  61. [61]
    H. Aoki et al., Noncommutative Yang-Mills in IIB matrix model, Nucl. Phys. B 565 (2000) 176 [hep-th/9908141] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Ambjørn, Y. Makeenko, J. Nishimura and R. Szabo, Finite N matrix models of noncommutative gauge theory, JHEP 11 (1999) 029 [hep-th/9911041] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    H. Steinacker, Emergent gravity from noncommutative gauge theory, JHEP 12 (2007) 049 [arXiv:0708.2426] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    H. Grosse, H. Steinacker and M. Wohlgenannt, Emergent gravity, matrix models and UV/IR mixing, JHEP 04 (2008) 023 [arXiv:0802.0973] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    H. Steinacker, Emergent geometry and gravity from matrix models: an introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    H. Grosse, F. Lizzi and H. Steinacker, Noncommutative gauge theory and symmetry breaking in matrix models, Phys. Rev. D 81 (2010) 085034 [arXiv:1001.2703] [INSPIRE].MathSciNetADSGoogle Scholar
  67. [67]
    H. Steinacker, Non-commutative geometry and matrix models, PoS (QGQGS 2011) 004 [arXiv:1109.5521] [INSPIRE].
  68. [68]
    J.M. Gracia-Bondía and J.C. Varilly, Algebras of distributions suitable for phase space quantum mechanics. 1, J. Math. Phys. 29 (1988) 869 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  69. [69]
    J.C. Varilly and J.M. Gracia-Bondía, Algebras of distributions suitable for phase-space quantum mechanics. 2. Topologies on the Moyal algebra, J. Math. Phys. 29 (1988) 880 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  70. [70]
    J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on noncommutative spaces, Eur. Phys. J. C 16 (2000) 161 [hep-th/0001203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    D.N. Blaschke and H. Steinacker, On the 1-loop effective action for the IKKT model and non-commutative branes, JHEP 10 (2011) 120 [arXiv:1109.3097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    J.-C. Wallet, Algebraic setup for the gauge fixing of BF and superBF systems, Phys. Lett. B 235 (1990) 71 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    L. Baulieu, M.P. Bellon, S. Ouvry and J.-C. Wallet, Balatin-Vilkovisky analysis of supersymmetric systems, Phys. Lett. B 252 (1990) 387 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    P.H. Ginsparg, Matrix models of 2 − D gravity, hep-th/9112013 [INSPIRE].
  76. [76]
    I.K. Kostov, Exact solution of the six vertex model on a random lattice, Nucl. Phys. B 575 (2000) 513 [hep-th/9911023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    N. Dunford and J.T. Schwartz, Linear operators II: spectral theory, Wiley Interscience, U.S.A. (1963)Google Scholar
  78. [78]
    N.I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner (1965).Google Scholar
  79. [79]
    R. Koekoek, P.A. Lesky and R.F. Swarttouw, Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Springer, Berlin, Germany (2010).Google Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Pierre Martinetti
    • 1
    • 2
  • Patrizia Vitale
    • 1
    • 2
  • Jean-Christophe Wallet
    • 3
  1. 1.Dipartimento di FisicaUniversità di Napoli Federico IINapoliItaly
  2. 2.INFN — Sezione di NapoliNapoliItaly
  3. 3.Laboratoire de Physique ThéoriqueOrsay CedexFrance

Personalised recommendations