Abstract
We construct an SU(5) grand unified model in which the hierarchies of the quark and lepton masses and mixing are explained by the \( {\Gamma}_6^{\prime } \) modular flavor symmetry. The hierarchies are realized by the Froggatt-Nielsen-like mechanism due to the residual \( {Z}_6^T \) symmetry, approximately unbroken at τ ~ i∞. We argue that the \( {\Gamma}_6^{\left({}^{\prime}\right)} \) symmetry is the minimal possibility to realize the up-type quark mass hierarchies, since the Yukawa matrix is symmetric. We find a combination of the representations and modular weights and then show numerical values of (1) coefficients for the realistic fermion hierarchies.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].
S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].
W.J. Marciano and G. Senjanovic, Predictions of Supersymmetric Grand Unified Theories, Phys. Rev. D 25 (1982) 3092 [INSPIRE].
M.B. Einhorn and D.R.T. Jones, The Weak Mixing Angle and Unification Mass in Supersymmetric SU(5), Nucl. Phys. B 196 (1982) 475 [INSPIRE].
J.R. Ellis, S. Kelley and D.V. Nanopoulos, Precision LEP data, supersymmetric GUTs and string unification, Phys. Lett. B 249 (1990) 441 [INSPIRE].
J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].
U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].
P. Langacker and M.-X. Luo, Implications of precision electroweak experiments for Mt, ρ0, sin2 θW and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].
C. Giunti, C.W. Kim and U.W. Lee, Running coupling constants and grand unification models, Mod. Phys. Lett. A 6 (1991) 1745 [INSPIRE].
T. Kobayashi and S. Nagamoto, Zero-modes on orbifolds: magnetized orbifold models by modular transformation, Phys. Rev. D 96 (2017) 096011 [arXiv:1709.09784] [INSPIRE].
T. Kobayashi et al., Modular symmetry and non-Abelian discrete flavor symmetries in string compactification, Phys. Rev. D 97 (2018) 116002 [arXiv:1804.06644] [INSPIRE].
T. Kobayashi and S. Tamba, Modular forms of finite modular subgroups from magnetized D-brane models, Phys. Rev. D 99 (2019) 046001 [arXiv:1811.11384] [INSPIRE].
H. Ohki, S. Uemura and R. Watanabe, Modular flavor symmetry on a magnetized torus, Phys. Rev. D 102 (2020) 085008 [arXiv:2003.04174] [INSPIRE].
S. Kikuchi et al., Revisiting modular symmetry in magnetized torus and orbifold compactifications, Phys. Rev. D 102 (2020) 105010 [arXiv:2005.12642] [INSPIRE].
S. Kikuchi et al., Modular symmetry by orbifolding magnetized T 2 × T 2: realization of double cover of ΓN, JHEP 11 (2020) 101 [arXiv:2007.06188] [INSPIRE].
K. Hoshiya et al., Classification of three-generation models by orbifolding magnetized T 2 × T 2, PTEP 2021 (2021) 033B05 [arXiv:2012.00751] [INSPIRE].
J. Lauer, J. Mas and H.P. Nilles, Duality and the Role of Nonperturbative Effects on the World Sheet, Phys. Lett. B 226 (1989) 251 [INSPIRE].
J. Lauer, J. Mas and H.P. Nilles, Twisted sector representations of discrete background symmetries for two-dimensional orbifolds, Nucl. Phys. B 351 (1991) 353 [INSPIRE].
S. Ferrara, D. Lust and S. Theisen, Target Space Modular Invariance and Low-Energy Couplings in Orbifold Compactifications, Phys. Lett. B 233 (1989) 147 [INSPIRE].
A. Baur, H.P. Nilles, A. Trautner and P.K.S. Vaudrevange, Unification of Flavor, CP, and Modular Symmetries, Phys. Lett. B 795 (2019) 7 [arXiv:1901.03251] [INSPIRE].
H.P. Nilles, S. Ramos-Sánchez and P.K.S. Vaudrevange, Eclectic Flavor Groups, JHEP 02 (2020) 045 [arXiv:2001.01736] [INSPIRE].
H.P. Nilles, S. Ramos-Sánchez and P.K.S. Vaudrevange, Eclectic flavor scheme from ten-dimensional string theory — II detailed technical analysis, Nucl. Phys. B 966 (2021) 115367 [arXiv:2010.13798] [INSPIRE].
S. Kikuchi, T. Kobayashi and H. Uchida, Modular flavor symmetries of three-generation modes on magnetized toroidal orbifolds, Phys. Rev. D 104 (2021) 065008 [arXiv:2101.00826] [INSPIRE].
F. Feruglio, Are neutrino masses modular forms?, in From My Vast Repertoire. . . : Guido Altarelli’s Legacy, A. Levy et al. eds., World Scientific (2019), p. 227–266 [https://doi.org/10.1142/9789813238053_0012] [arXiv:1706.08749] [INSPIRE].
R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].
T. Kobayashi, K. Tanaka and T.H. Tatsuishi, Neutrino mixing from finite modular groups, Phys. Rev. D 98 (2018) 016004 [arXiv:1803.10391] [INSPIRE].
J.T. Penedo and S.T. Petcov, Lepton Masses and Mixing from Modular S4 Symmetry, Nucl. Phys. B 939 (2019) 292 [arXiv:1806.11040] [INSPIRE].
P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular A5 symmetry for flavour model building, JHEP 04 (2019) 174 [arXiv:1812.02158] [INSPIRE].
G.-J. Ding, S.F. King and X.-G. Liu, Neutrino mass and mixing with A5 modular symmetry, Phys. Rev. D 100 (2019) 115005 [arXiv:1903.12588] [INSPIRE].
X.-G. Liu and G.-J. Ding, Neutrino Masses and Mixing from Double Covering of Finite Modular Groups, JHEP 08 (2019) 134 [arXiv:1907.01488] [INSPIRE].
P.P. Novichkov, J.T. Penedo and S.T. Petcov, Double cover of modular S4 for flavour model building, Nucl. Phys. B 963 (2021) 115301 [arXiv:2006.03058] [INSPIRE].
X.-G. Liu, C.-Y. Yao and G.-J. Ding, Modular invariant quark and lepton models in double covering of S4 modular group, Phys. Rev. D 103 (2021) 056013 [arXiv:2006.10722] [INSPIRE].
X.-G. Liu, C.-Y. Yao, B.-Y. Qu and G.-J. Ding, Half-integral weight modular forms and application to neutrino mass models, Phys. Rev. D 102 (2020) 115035 [arXiv:2007.13706] [INSPIRE].
G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].
H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].
H. Ishimori et al., An introduction to non-Abelian discrete symmetries for particle physicists, Springer (2012) [https://doi.org/10.1007/978-3-642-30805-5] [INSPIRE].
D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].
S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].
S.F. King et al., Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].
M. Tanimoto, Neutrinos and flavor symmetries, AIP Conf. Proc. 1666 (2015) 120002 [INSPIRE].
S.F. King, Unified Models of Neutrinos, Flavour and CP Violation, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413] [INSPIRE].
S.T. Petcov, Discrete Flavour Symmetries, Neutrino Mixing and Leptonic CP Violation, Eur. Phys. J. C 78 (2018) 709 [arXiv:1711.10806] [INSPIRE].
F. Feruglio and A. Romanino, Lepton flavor symmetries, Rev. Mod. Phys. 93 (2021) 015007 [arXiv:1912.06028] [INSPIRE].
T. Kobayashi et al., An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists, Springer (2022) [https://doi.org/10.1007/978-3-662-64679-3] [INSPIRE].
J.C. Criado and F. Feruglio, Modular Invariance Faces Precision Neutrino Data, SciPost Phys. 5 (2018) 042 [arXiv:1807.01125] [INSPIRE].
T. Kobayashi et al., Modular A4 invariance and neutrino mixing, JHEP 11 (2018) 196 [arXiv:1808.03012] [INSPIRE].
G.-J. Ding, S.F. King and X.-G. Liu, Modular A4 symmetry models of neutrinos and charged leptons, JHEP 09 (2019) 074 [arXiv:1907.11714] [INSPIRE].
P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular S4 models of lepton masses and mixing, JHEP 04 (2019) 005 [arXiv:1811.04933] [INSPIRE].
T. Kobayashi et al., New A4 lepton flavor model from S4 modular symmetry, JHEP 02 (2020) 097 [arXiv:1907.09141] [INSPIRE].
X. Wang and S. Zhou, The minimal seesaw model with a modular S4 symmetry, JHEP 05 (2020) 017 [arXiv:1910.09473] [INSPIRE].
P. Chen, G.-J. Ding, J.-N. Lu and J.W.F. Valle, Predictions from warped flavor dynamics based on the T′ family group, Phys. Rev. D 102 (2020) 095014 [arXiv:2003.02734] [INSPIRE].
I. de Medeiros Varzielas, S.F. King and Y.-L. Zhou, Multiple modular symmetries as the origin of flavor, Phys. Rev. D 101 (2020) 055033 [arXiv:1906.02208] [INSPIRE].
T. Asaka, Y. Heo, T.H. Tatsuishi and T. Yoshida, Modular A4 invariance and leptogenesis, JHEP 01 (2020) 144 [arXiv:1909.06520] [INSPIRE].
T. Asaka, Y. Heo and T. Yoshida, Lepton flavor model with modular A4 symmetry in large volume limit, Phys. Lett. B 811 (2020) 135956 [arXiv:2009.12120] [INSPIRE].
P.P. Novichkov, S.T. Petcov and M. Tanimoto, Trimaximal Neutrino Mixing from Modular A4 Invariance with Residual Symmetries, Phys. Lett. B 793 (2019) 247 [arXiv:1812.11289] [INSPIRE].
T. Kobayashi et al., Finite modular subgroups for fermion mass matrices and baryon/lepton number violation, Phys. Lett. B 794 (2019) 114 [arXiv:1812.11072] [INSPIRE].
H. Okada and M. Tanimoto, CP violation of quarks in A4 modular invariance, Phys. Lett. B 791 (2019) 54 [arXiv:1812.09677] [INSPIRE].
H. Okada and M. Tanimoto, Towards unification of quark and lepton flavors in A4 modular invariance, Eur. Phys. J. C 81 (2021) 52 [arXiv:1905.13421] [INSPIRE].
T. Nomura and H. Okada, A modular A4 symmetric model of dark matter and neutrino, Phys. Lett. B 797 (2019) 134799 [arXiv:1904.03937] [INSPIRE].
H. Okada and Y. Orikasa, Modular S3 symmetric radiative seesaw model, Phys. Rev. D 100 (2019) 115037 [arXiv:1907.04716] [INSPIRE].
T. Nomura and H. Okada, A two loop induced neutrino mass model with modular A4 symmetry, Nucl. Phys. B 966 (2021) 115372 [arXiv:1906.03927] [INSPIRE].
T. Nomura, H. Okada and O. Popov, A modular A4 symmetric scotogenic model, Phys. Lett. B 803 (2020) 135294 [arXiv:1908.07457] [INSPIRE].
J.C. Criado, F. Feruglio and S.J.D. King, Modular Invariant Models of Lepton Masses at Levels 4 and 5, JHEP 02 (2020) 001 [arXiv:1908.11867] [INSPIRE].
S.F. King and Y.-L. Zhou, Trimaximal TM1 mixing with two modular S4 groups, Phys. Rev. D 101 (2020) 015001 [arXiv:1908.02770] [INSPIRE].
G.-J. Ding, S.F. King, X.-G. Liu and J.-N. Lu, Modular S4 and A4 symmetries and their fixed points: new predictive examples of lepton mixing, JHEP 12 (2019) 030 [arXiv:1910.03460] [INSPIRE].
I. de Medeiros Varzielas, M. Levy and Y.-L. Zhou, Symmetries and stabilisers in modular invariant flavour models, JHEP 11 (2020) 085 [arXiv:2008.05329] [INSPIRE].
D. Zhang, A modular A4 symmetry realization of two-zero textures of the Majorana neutrino mass matrix, Nucl. Phys. B 952 (2020) 114935 [arXiv:1910.07869] [INSPIRE].
T. Nomura, H. Okada and S. Patra, An inverse seesaw model with A4 -modular symmetry, Nucl. Phys. B 967 (2021) 115395 [arXiv:1912.00379] [INSPIRE].
T. Kobayashi, T. Nomura and T. Shimomura, Type II seesaw models with modular A4 symmetry, Phys. Rev. D 102 (2020) 035019 [arXiv:1912.00637] [INSPIRE].
J.-N. Lu, X.-G. Liu and G.-J. Ding, Modular symmetry origin of texture zeros and quark lepton unification, Phys. Rev. D 101 (2020) 115020 [arXiv:1912.07573] [INSPIRE].
X. Wang, Lepton flavor mixing and CP violation in the minimal type-(I+II) seesaw model with a modular A4 symmetry, Nucl. Phys. B 957 (2020) 115105 [arXiv:1912.13284] [INSPIRE].
S.J.D. King and S.F. King, Fermion mass hierarchies from modular symmetry, JHEP 09 (2020) 043 [arXiv:2002.00969] [INSPIRE].
M. Abbas, Fermion masses and mixing in modular A4 Symmetry, Phys. Rev. D 103 (2021) 056016 [arXiv:2002.01929] [INSPIRE].
H. Okada and Y. Shoji, Dirac dark matter in a radiative neutrino model, Phys. Dark Univ. 31 (2021) 100742 [arXiv:2003.11396] [INSPIRE].
H. Okada and Y. Shoji, A radiative seesaw model with three Higgs doublets in modular A4 symmetry, Nucl. Phys. B 961 (2020) 115216 [arXiv:2003.13219] [INSPIRE].
G.-J. Ding and F. Feruglio, Testing Moduli and Flavon Dynamics with Neutrino Oscillations, JHEP 06 (2020) 134 [arXiv:2003.13448] [INSPIRE].
H. Okada and M. Tanimoto, Quark and lepton flavors with common modulus τ in A4 modular symmetry, Phys. Dark Univ. 40 (2023) 101204 [arXiv:2005.00775] [INSPIRE].
H. Okada and M. Tanimoto, Modular invariant flavor model of A4 and hierarchical structures at nearby fixed points, Phys. Rev. D 103 (2021) 015005 [arXiv:2009.14242] [INSPIRE].
K.I. Nagao and H. Okada, Neutrino and dark matter in a gauged U(1)R symmetry, JCAP 05 (2021) 063 [arXiv:2008.13686] [INSPIRE].
X. Wang, B. Yu and S. Zhou, Double covering of the modular A5 group and lepton flavor mixing in the minimal seesaw model, Phys. Rev. D 103 (2021) 076005 [arXiv:2010.10159] [INSPIRE].
H. Okada and M. Tanimoto, Spontaneous CP violation by modulus τ in A4 model of lepton flavors, JHEP 03 (2021) 010 [arXiv:2012.01688] [INSPIRE].
C.-Y. Yao, J.-N. Lu and G.-J. Ding, Modular Invariant A4 Models for Quarks and Leptons with Generalized CP Symmetry, JHEP 05 (2021) 102 [arXiv:2012.13390] [INSPIRE].
H. Kuranaga, H. Ohki and S. Uemura, Modular origin of mass hierarchy: Froggatt-Nielsen like mechanism, JHEP 07 (2021) 068 [arXiv:2105.06237] [INSPIRE].
F.J. de Anda, S.F. King and E. Perdomo, SU(5) grand unified theory with A4 modular symmetry, Phys. Rev. D 101 (2020) 015028 [arXiv:1812.05620] [INSPIRE].
T. Kobayashi et al., Modular S3-invariant flavor model in SU(5) grand unified theory, PTEP 2020 (2020) 053B05 [arXiv:1906.10341] [INSPIRE].
X. Du and F. Wang, SUSY breaking constraints on modular flavor S3 invariant SU(5) GUT model, JHEP 02 (2021) 221 [arXiv:2012.01397] [INSPIRE].
P. Chen, G.-J. Ding and S.F. King, SU(5) GUTs with A4 modular symmetry, JHEP 04 (2021) 239 [arXiv:2101.12724] [INSPIRE].
S.F. King and Y.-L. Zhou, Twin modular S4 with SU(5) GUT, JHEP 04 (2021) 291 [arXiv:2103.02633] [INSPIRE].
G. Charalampous, S.F. King, G.K. Leontaris and Y.-L. Zhou, Flipped SU(5) with modular A4 symmetry, Phys. Rev. D 104 (2021) 115015 [arXiv:2109.11379] [INSPIRE].
G.-J. Ding, S.F. King and C.-Y. Yao, Modular S4 × SU(5) GUT, Phys. Rev. D 104 (2021) 055034 [arXiv:2103.16311] [INSPIRE].
G.-J. Ding, S.F. King and J.-N. Lu, SO(10) models with A4 modular symmetry, JHEP 11 (2021) 007 [arXiv:2108.09655] [INSPIRE].
G.-J. Ding, S.F. King, J.-N. Lu and B.-Y. Qu, Leptogenesis in SO(10) models with A4 modular symmetry, JHEP 10 (2022) 071 [arXiv:2206.14675] [INSPIRE].
S.T. Petcov and M. Tanimoto, A4 modular flavour model of quark mass hierarchies close to the fixed point τ = ω, Eur. Phys. J. C 83 (2023) 579 [arXiv:2212.13336] [INSPIRE].
S.T. Petcov and M. Tanimoto, A4 Modular Flavour Model of Quark Mass Hierarchies close to the Fixed Point τ = i∞, arXiv:2306.05730 [INSPIRE].
S. Kikuchi et al., Quark mass hierarchies and CP violation in A4 × A4 × A4 modular symmetric flavor models, JHEP 07 (2023) 134 [arXiv:2302.03326] [INSPIRE].
Y. Abe, T. Higaki, J. Kawamura and T. Kobayashi, Quark masses and CKM hierarchies from \( {S}_4^{\prime } \) modular flavor symmetry, arXiv:2301.07439 [INSPIRE].
S. Kikuchi et al., Quark hierarchical structures in modular symmetric flavor models at level 6, Phys. Rev. D 107 (2023) 055014 [arXiv:2301.03737] [INSPIRE].
F. Feruglio, V. Gherardi, A. Romanino and A. Titov, Modular invariant dynamics and fermion mass hierarchies around τ = i, JHEP 05 (2021) 242 [arXiv:2101.08718] [INSPIRE].
P.P. Novichkov, J.T. Penedo and S.T. Petcov, Fermion mass hierarchies, large lepton mixing and residual modular symmetries, JHEP 04 (2021) 206 [arXiv:2102.07488] [INSPIRE].
D. Meloni and M. Parriciatu, A simplest modular S3 model for leptons, arXiv:2306.09028 [INSPIRE].
Y. Abe, T. Higaki, J. Kawamura and T. Kobayashi, Quark and lepton hierarchies from S4’ modular flavor symmetry, Phys. Lett. B 842 (2023) 137977 [arXiv:2302.11183] [INSPIRE].
J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].
V. Lucas and S. Raby, Nucleon decay in a realistic SO(10) SUSY GUT, Phys. Rev. D 55 (1997) 6986 [hep-ph/9610293] [INSPIRE].
T. Goto and T. Nihei, Effect of RRRR dimension five operator on the proton decay in the minimal SU(5) SUGRA GUT model, Phys. Rev. D 59 (1999) 115009 [hep-ph/9808255] [INSPIRE].
H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5), Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104] [INSPIRE].
J. Hisano, D. Kobayashi, T. Kuwahara and N. Nagata, Decoupling Can Revive Minimal Supersymmetric SU(5), JHEP 07 (2013) 038 [arXiv:1304.3651] [INSPIRE].
H.M. Lee et al., A unique \( {\mathbb{Z}}_4^R \) symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].
H.M. Lee et al., Discrete R symmetries for the MSSM and its singlet extensions, Nucl. Phys. B 850 (2011) 1 [arXiv:1102.3595] [INSPIRE].
C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].
T. Higaki and J. Kawamura, A low-scale flavon model with a ZN symmetry, JHEP 03 (2020) 129 [arXiv:1911.09127] [INSPIRE].
C.-C. Li, X.-G. Liu and G.-J. Ding, Modular symmetry at level 6 and a new route towards finite modular groups, JHEP 10 (2021) 238 [arXiv:2108.02181] [INSPIRE].
S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].
L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
Acknowledgments
The work of J.K. is supported in part by the Institute for Basic Science (IBS-R018-D1). This work is supported in part by he Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture (MEXT), Japan No. JP22K03601 (T.H.) and JP23K03375 (T.K.). The work of Y.A. is supported by JSPS Overseas Research Fellowships.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2307.01419
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Abe, Y., Higaki, T., Kawamura, J. et al. Fermion hierarchies in SU(5) grand unification from \( {\Gamma}_6^{\prime } \) modular flavor symmetry. J. High Energ. Phys. 2023, 97 (2023). https://doi.org/10.1007/JHEP08(2023)097
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2023)097